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Abstract

Interactive applications such as voice, audio, and video, as well as business appli-
cations such as Virtual Private Networks are becoming an increasingly important
component of Internet traffic. Such applications have strict requirements on the total
end-to-end delay which may be incurred in the network. One approach to meeting
these delay requirements, known as service differentiation, is to give preferential treat-
ment to latency sensitive traffic. Doing so may lead to an efficient network design
with the minimum amount of resources (e.g., bandwidth) required to support the
needs of each traffic tyvpe. An alternative approach is to provide sufficient resources
so that all traffic meets the most stringent delay requirements. This latter approach
is known as overprovisioning.

In the context of wide-area Internet backbone networks, two factors make over-
provisioning an attractive approach. First, the high link speeds and large volumes of
traffic make service differentiation complex and potentially costly to deploy. Second,
given the degree of aggregation and resulting traffic characteristics, the amount of
overprovisioning required may not be very large. We establish that this is indeed the

case by collecting and analyzing traffic measurements from the Sprint IP network, a

vil



commercial Tier-1 Internet backbone.

We begin by performing network simulations using a set of 331 one-hour traffic
measurements from the Sprint network. These simulations demonstrate that link
utilization can reach 80% - 90% before queuing delays begin to exceed several mil-
liseconds. While the simulations can be used to evaluate the level of overprovisioning
required in the network, many network design problems are greatly aided by an ana-
lytic traffic model. We therefore develop a traffic model which captures the observed
characteristics of backbone traffic and derive expressions for the delay through a sin-
gle queue in the network, as well as the end-to-end queuing delay. Using this model
we solve several network design problems including capacity planning and optimal

route selection.
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Chapter 1

Introduction

1.1 Internet History and Architecture

The origins of the Internet can be traced back to a network known as the ARPANET
which was developed to allow university researchers to access large mainframe com-
puters. In the late 1960s, mainframe computers were being requested by many re-
searchers supported by the U.S. Department of Defense Advanced Research Projects
Agency (DARPA). These computers represented specialized hardware and software
resources. For example, one computer system would support symbolic mathematical
analysis programs while another computer would support network simulation and
modeling. To allow many researchers to share these specialized resources. DARPA
initiated development of a data network known as the ARPANET [66]. In 1969 the
first four nodes of this network were installed at UCLA, the Stanford Research Insti-

tute, the University of California Santa Barbara, and the University of Utah. Over
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the next 30 years, this network evolved into what is known today as the Internet.

At the time at which the ARPANET was developed, communication networks used
a technique known as circuit switching. In a circuit switched network, users establish
a dedicated connection with a fixed amount of bandwidth between the source and
destination for the duration of their communication. This approach is efficient for
traffic such as telephone voice calls which transmit data at a constant bit rate and
whose connections durations are longer the amount of time required to establish the
connections.

Computer data traffic, however, is traffic is typically very bursty. The rate at
which traffic is generated fluctuates over time. For example, a user may download
a web page from a server, wait some time as they browse the page, then download
another page from the same server. In a circuit switched network the user would
either need to reserve a circuit for the entire duration of time it takes to download
both pages, or the user could establish two circuits, one for each page. In the first
case, natwork bandwidth is reserved for the connection during the idle time when
the user is downloading a page resulting in low network utilization. The second case
makes more efficient use of network resources, but each connection must incur the
overhead and delay of establishing a circuit. If the amount of time required to set
up the connection is comparable to the amount of time required to transfer the data
(i.e. for connections which transfer small amounts of data), this approach is quite

inefficient.

To better handle bursty data traffic, the ARPANET used a technique known as
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packet switching. In a packet switched network, data to be transmitted is broken
down into small units called packets. A header containing the destination address,
source address, and other control information is added to the packet, and the packet
is transmitted into the network. The packet is forwarded from one link to another
along the path from the source to destination.

Packet switching allows users transmitting bursty traffic to efficiently share net-
work resources. The disadvantage of a packet switched network, however, is that
packet switching only provides best effort service. In a circuit switched network, once
a connection has been established. the user is guaranteed they will receive the amount
of bandwidth reserved by the connection. No such guarantees are made in a packet
switched network. A burst of packets from a large number of uses may arrive to a link
at a rate faster than the link can support. As a result, the packets must be buffered
at that link until they can be transmitted. This can result in delays as the packets
are waiting to be transmitted, and if the buffer in the node completely fills up, pack-
ets may be lost. While this may seem undesirable, traditional data applications can
tolerate such delay and loss. For example, if a packet of an email message experiences
400 ms of network delay, the recipient is unlikely to notice. Furthermore, even if a
packet is lost in the network, protocols such as TCP provide a mechanism to detect
the loss and retransmit the packet.

The ARPANET was quite successful and grew to nearly 100 nodes by 1975. As
a result of the success of the ARPANET, DARPA began exploring the use of packet

switching over satellite networks (SATNET) and wireless radio networks (PRNET and
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Alohanet). Each of these networks, however, used a different set of protocols, packet
formats, and address conventions to identify source and destination systems. To allow
users to communicate across multiple networks, a set of protocols was developed to
interconnect, or internet, these networks {17]. These protocols were later standardized
as the Transmission Control Protocol (TCP) [96], and the Internet Protocol (IP) [95].

In addition to DARPA, many other agencies were impressed by the success of the
ARPANET, and they decided to develop their own networks. In the mid 1970s, the
Department of Energy created HEPNET to connect the high-energy physics commu-
nity. In 1981, the National Science Foundation (NSF) funded CSNET to connect
computer science departments. Corporate entities such as IBM, Xerox, and Digi-
tal Equipment Corporation also developed large data networks for their own use.
To support users without sufficient resources to deploy their own dedicated networks,
commercial network providers developed networks to which users could purchase con-
nections. The first of these commercial networks was Telenet, developed by BBN [22]
in 1974.

In 1985, NSF began developing a network known as the NSFNET to connect
all academic users, regardless of discipline [66]. The architecture of this network
was somewhat different from that of the ARPANET. The ARPANET was a mono-
lithic network administered by a single entity under DARPA contract. To connect to
ARPANET, a research group needed to be funded by DARPA and received a network
connection as part of the contract. The NSF established a similar backbone network,

the NSFNET backbone, to connect five supercomputer centers located at Cornell,
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the University of Illinois, the Pittsburgh Supercomputing Center, UC San Diego, and
Princeton as well as the National Center for Atmospheric Research in Boulder, CO.
However, the NSF also funded separate regional networks which connected universi-
ties and other research institutions within a common geographic area to the NSFNET
backbone. This led to the creation of a number of regional Internet Service Providers
(ISPs) such as NYSERNET, JVNCNET, and SDSCNET. Most users would connect
to these regional networks rather than connecting directly to the NSFNET backbone
itself.

To support growing traffic demand the NSFNET backbone was expanded to 13
nodes in 1988. The additional nodes included Merit Networks at the University of
Michigan, which administered the backbone: BARRNET in San Francisco: MID-
NET in Lincoln, Nebraska: WESTNET in Salt Lake City, Utah; NWNET in Seattle,
Washington; SESQUINET at Rice University; and SURANET at Georgia Tech. The
NSFNET backbone was also upgraded from 56 kb/s links which had been used in the
ARPANET (and which are the same speed as dial-up modems today), to 1.5 Mb/s
T-1 links and later 45 Mb/s T-3 links.

The aim of the network was to support academic research, and consequently the
original NSENET charter prohibited the use of the network for commercial purposes.
As a result, many regional ISPs transitioned to private companies (rather than receive
funding from NSF) and began offering commercial network service in addition to
connection to the NSFNET. For example, NYSENET became a commercial network

known as PSINET. This also led to the development of networks such as UUNET
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Figure 1.1: Internet architecture

which were commercial equivalents to the NSFNET backbone. As these commercial
networks grew, NSF subsidy of the NSFNET backbone became unnecessary, and
in April 1995 the NSFNET was retired. The remaining combination of commercial
backbone and regional networks is the underlying infrastructure of the Internet today.

A conceptual diagram of the Internet architecture is shown in Figure 1.1. The In-
ternet is composed of a small number of Tier-1 backbone networks (e.g. MCI/UUNET,
Sprint, AT&T, and Qwest) that provide connectivity over a wide geographic area.
Most of these networks also provide international connectivity.

Connected to the Tier-1 networks are smaller Tier-2 and Tier-3 networks which

purchase transit service from one or more Tier-1 networks. Examples of such networks
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include large nationwide dial-up service providers such as AOL or Earthlink. These
networks will establish a dial-up modem, DSL, or cable-modem pool for each city in
which they provide service, and purchase a connection from the modem pool to one or
more backbone networks. Similar ISPs, such as RCN, offer higher speed connections
(e.g- 45 Mb/s DS-3) for business. Some very large corporations or web servers, which
require very high bandwidth connections (e.g. 155 Mb/s OC-3), may purchase service
directly from the backbone itself.

As part of the transit service agreement, the backbone network agrees to accept
traffic from the customer and deliver it to any destination in the Internet. To reach
all destinations, the Tier-1 networks must therefore be interconnected. These inter-
connection locations are known as peering points. For performance reasons multiple

peering points may exist between two Tier-1 networks at different locations.

1.2 Application Requirements

As the network architecture has evolved, so have the applications which use the
network. As mentioned above, the initial goal of the ARPANET was to provide
remote access to large time-sharing computers. In fact, the first message transmitted
between two nodes in the ARPANET was a command to login to the host at the
Stanford Research Institute from a host at UCLA [66|. The remote login application,
however, was not responsible for the rapid growth of the network. Instead, the growth
was initially driven by the use of email, which was first developed in 1972 [114]. By

the following year, 75% of the traffic on the ARPANET was email [22].
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For the next 20 years, email, network news (a system of online discussion groups),
and file transfers were the dominant use of the network. In the 1990s, the World
Wide Web (WWW) replaced these applications as the dominant source of network
traffic [44]. The Hypertext Transfer Protocol (HTTP), the protocol used to transfer
web pages, was originally developed by Tim Berners-Lee for the European particle
physics research center CERN in 1991 [6]. It was developed so that CERN researchers
could easily access the work of other research groups. A text-mode WWW browser
was released in 1991, and over the next two years several graphical browsers were
developed. The most popular of these was Mosaic which was developed in 1993 by
a group of programmers at the National Center for Supercomputing Applications
at the University of Illinois (Mosaic later evolved into the Netscape browser). The
graphical interfaces were popular, and by 1995, the WWW was the dominant network
application [44]. Today, the WWW is still the dominant source of network traffic
in most networks. However, as we will see in Chapter 2, peer-to-peer file sharing
applications are beginning to dominate traffic volume on some links. Examples of
such applications include Napster, Kazaa, and Morpheus.

The growth of the WWW and real-time applications has led to a fundamental
change in the requirements for the network. For applications such as email, file
transfer, and network news, the best effort service provided by a packet switched
network is sufficient. These applications use a protocol known as TCP to detect
and retransmit lost packets. Furthermore, when TCP detects a loss, it reduces the

transmission rate of the application in order to alleviate the congestion in the network
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which presumably caused the loss. This procedure works well for non-interactive
applications such as email. Applications such as the WWW, real-time video, voice,
and online gaming, however, are interactive. Users expect that the transmission of
data through the network occurs within some bounded period of time. For WWW
applications, users expect a page download will take no more than 53-10 seconds [10].
It is possible to recover from a few lost packets and still meet this expectation, but
during periods of heavy congestion, page downloads can take much longer than several
seconds [84]. Voice communication has much more stringent delay requirements.
Studies have been performed in which users were asked to rank the quality of voice
telephone calls with different levels of delay [32]. For calls in which the delay between
the time at which one user speaks a word and the other user hears it is only 50 ms,
90% of the calls received a “good” ranking. When the delay increased to 150 ms, 88%
of the calls received a “good” ranking. With a delay of 250 ms. only 80% of the calls
received a “good” ranking.

While real-time media applications such as voice and video have strict delay re-
quirements. they can tolerate a small number of packets which exceed these delay
requirements. Such packets will arrive too late to be played back, and will simply be
considered to be lost by the receiver. The effects of these losses can be minimized
using error concealment and correction techniques [99].

In addition to real-time applications, some data applications also require better
than best effort service from the network. The WWW and other network applica-

tions have become mission critical for many businesses. This includes business which
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communicate directly with customers over the network (e.g. electronic commerce
companies and online stock trading companies), as well as business which establish
Virtual Private Networks (VPNs) between different sites in order to facilitate com-

munication with the company.

1.3 Supporting Delay Requirements

To support business customers and delay sensitive applications, ISPs offer Service
Level Agreements (SLAs) which specify bounds on the loss and delay that a cus-
tomer’s traffic will experience within the provider’s network. Ideally, these SLAs
would specifv the loss and delay performance experienced between an ISP’s customer
and any destination in the Internet. However, this type of SLA is quite difficult
to support since the traffic passes through many networks. Consider. for example,
Customer 2 who is connected to ISP B in Figure 1.1. This customer has an audio
file which they would like to stream to other users. If the user is a dial-up modem
customer connected to ISP A, the audio traffic will pass through four networks: ISP
B, Backbone 2, Backbone 1, and ISP A. If the user is part of the Large Corporate
Customer, then the traffic will pass through two networks: ISP B and Backbone 3.
In order for ISP B to offer an SLA which guaranteed a certain delay between Cus-
tomer 2 and any destination in the Internet, all networks would need to support the
required level of performance. This would require the cooperation of the more than
10,000 independent networks which comprise the Internet [106].

Since it is not possible for a network provider today to offer a delay guarantee to
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any destination in the Internet, the service provider only offers an SLA which guaran-
tees the performance within their own network. Such SLAs offer either deterministic
guarantees or probabilistic guarantees. Deterministic guarantees provide hard bounds
on the performance of the network, e.g. the delay through the network will always
be less than 30 ms. Probabilistic guarantees provide statistical performance bounds,
e.g. 99% of the packets will experience less than 30 ms delay. The challenge facing
network providers is how to design their networks to meet these SLAs.

There are two basic approaches which may be used to meet the delay-based SLAs.
One approach, known as traffic differentiation, is to provide preferential treatment to
latency sensitive traffic. This approach can result in efficient utilization of network
resources, but it adds complexity and cost to the network. Below we describe two
mechanisms, IntServ and DiffServ, which have been proposed to implement traffic
differentiation in [P networks. A second approach, known as bandwidth provisioning,
is to provide sufficient bandwidth in the network so that all traffic meets the most
stringent delay requirements. This approach is simpler, but may be costly in terms

of the bandwidth required.

1.3.1 Integrated Services (IntServ)

IntServ is a mechanism by which circuit functionality can be added to the packet-
switched Internet [12]. When a user wishes to communicate with a host, the user
transmits a reservation request message that specifies the delay performance the user

desires and the characteristics of the traffic the user will transmit. Network elements
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(i.e. routers) determine if enough bandwidth and buffer space is available to meet the
performance requested by the user. If so, the connection is accepted and the resources
are reserved for that connection. If not, the network denies the connection request.
The protocol which is used to make the connection requests is known as RSVP [13].

One of the key components of this approach is the manner in which the user’s traf-
fic is specified and the procedure which routers use to determine if sufficient resources
are available to support the performance requirements of the traffic. Since data ap-
plications are inherently bursty, and this burstiness can result in queuing delay, the
traffic specification must include more information than simply the average data rate.
One option is to specify a long-term average rate and a peak data rate [41]. With such
a specification, deterministic guarantees can be met by providing enough bandwidth
so that the desired performance level is satisfied when all users are transmitting at the
peak rates. A slightly more sophisticated traffic characterization is the token bucket.
The token bucket specifies a long term average token rate and a bucket size. Tokens
accumulate in the bucket at the average rate, and a maximum number of tokens can
be held in the bucket. When a packet is to be transmitted, the router checks if a
token is available. If so the packet is transmitted and a token is removed from the
bucket. If not, the packet transmission is delayed until a token is available. Using
the procedure described in [26},[27] , routers are able to determine the delay that will
be experienced by traffic conforming to a particular token bucket specification and
can therefore determine if a connection should be accepted or rejected. This type

of analysis has been extended to handle more elaborate types of deterministic traffic
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specifications which specify the peak arrival rate over multiple time intervals [11].

Many applications, however, do not require deterministic guarantees. Voice, au-
dio, and video, for example, can tolerate the loss of some packets. For such traffic
statistical guarantees are sufficient. To model such traffic, a statistical estimator
known as the effective bandwidth has been developed [55],[45],60|,[49].{30]. The effec-
tive bandwidth is a measure of the amount of capacity required in order to support
a particular delay requirement for a flow.

One difficulty with all of these descriptors is determining the parameters for a
given flow. For some flows, such as those streaming a stored video file or an audio
music file, the traffic descriptors can be computed before transmission begins based
on the file characteristics. However, for many types of network traffic it is difficult to
determine, a priori, the characteristics of a particular flow. For example, one cannot
predict the characteristics of the transmission of a web page since the transmission
is controlled by TCP and will be affected by the amount of bandwidth and the
amount of loss experienced in the network. To meet delay guarantees for such systems,
measurement based algorithms have been developed [46].[58],[48]. In such systems,
network entities measure the traffic to estimate the traffic characteristics. When these
systems detect the network can no longer support any new traffic. new connection
requests are denied.

The connection admission control mechanism is a critical aspect of the integrated
services architecture. Equally important are the scheduling mechanisms which allo-

cate network resources to the admitted flows. The scheduler is the part of the router
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which is responsible for selecting the order in which packets are transmitted on a link.
The simplest scheduler is a first-in-first-out (FIFO) scheduler. Packets are inserted
into the queue in the order in which they are received, and they are removed from
the queue in the same order. However, this type of scheduler may not be able to
meet delay requirements. For example, if one user transmits a large burst of data, all
packets arriving after the burst will be delayed. To meet delay guarantees it may be
beneficial to serve the packets in a different manner. One option is to perform strict
priority scheduling. In the simplest case, a router maintains two queues, one for high
priority data and one for low priority data. Packets in the low priority queue are only
served if there are no packets waiting in the high priority queue. While this guar-
antees low delay performance for the high priority queue (assuming limited amounts
of high priority traffic are admitted to the network), it is possible that packets in
the low priority queue never get served. In many cases it is desirable to allocate a
minimum amount of service time to each queue. With such a system, each user can
be assigned their own queue and allocated sufficient bandwidth to meet their delay
requirements. Algorithms such as Weighted Fair Queuing (WFQ) [31] and Packetized
General Processor Sharing [87],[88] have been proposed to accomplish this goal. These
algorithms, however, are quite difficult to implement, so many approximation algo-
rithms have been developed. Readers interested in a discussion of these algorithms,
as well as other fair queuing algorithms can find a summary in [115] and [50].

The primary difficulty with IntServ is that each flow must establish a reservation

with and be treated individually by each router through which it passes. In Chapter
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2 we will see that some high speed backbone links can carry up to 300,000 active flows
in a one minute interval. While it is possible to implement schedulers which serve
this large number of flows, processing the connection setup messages is quite difficult.
To address this problem, several protocols to aggregate RSVP requests from multiple
users into a single request have been proposed, but none were standardized. In
addition, a unique distributed scheduling algorithm known as Dynamic Packet State
(DPS) has been developed [103]. In DPS, edge routers (which process a relatively
small number of flows) attach a header to each packet indicating how the packet should
be scheduled within the backbone network. Using only the header information, core
routers can make the appropriate scheduling decisions without knowing the details of

each flow in the network.

1.3.2 Differentiated Services (DiffServ)

A second approach to implementing service differentiation is to offer a single service
for all packets with similar performance requirements. For example, voice traffic
from all users may be aggregated into a single class. This approach was developed
to address the scalability problems of IntServ. In this approach, the network only
maintains queues for each traffic type, rather than for each user, and network routers
do not need to process connection requests for individual user flows.

This approach has been standardized as Differentiated Services (DiffServ) [9]. In
DiffServ, the ISP and the customer establish a contract known as a Service Level

Agreement (SLA). The SLA specifies a traffic profile which the customer’s traffic
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must meet and the service that the traffic will receive. As long as the customer’s
traffic fits the profile, it will receive the promised service. If the traffic exceeds the
profile, however, it can be dropped or classified into a lower quality service.
Networks which implement DiffServ operate as follows. When a packet enters the
network, the ingress router classifies the packet according to the SLA established with
the customer, and marks the packet according to the class of service it should receive.
At each node in the network, the router treats packets according to the per-hop
behavior (PHB) defined for the traffic class to which the packet belongs. Two basic
PHBs have been defined. The Expedited Forwarding PHB states that a minimum
amount of bandwidth is to be reserved at each router for the EF traffic class [29].
The amount of bandwidth reserved is a function of the traffic volume and the delay
guarantee which is offered by the network. A second PHB is the Assured Forwarding
(AF) PHB [51]. In this PHB, four AF classes are defined, each of which receives a
configurable amount of network bandwidth. Within a single AF class, there exist
three levels of drop priority. These drop priorities are intended to provide further

service differentiation, and can be used for such applications as layered video [62].

1.3.3 Bandwidth Provisioning

An alternative to performing traffic differentiation is bandwidth provisioning. This
approach is based on the observation that it is always possible to meet a certain delay
requirement by simply providing enough bandwidth in the network. However, due to

the bursty nature of data traffic, the bandwidth requirements may be much greater



CHAPTER 1. INTRODUCTION 17

than the average traffic volume. In fact, studies of traffic in access networks, have
found that the network must have twice as much bandwidth as the average traffic
volume in order to achieve an average queuing delay of less than five milliseconds for
each link [35].

Despite its potentially high cost, many network providers use the bandwidth pro-
visioning approach because of its simplicity. Using forecasts of expected sales volume
and traffic growth projections, network engineers estimate how much traffic demand
will increase before the next provisioning cycle. The network is then designed with
sufficient capacity so that link utilization will not exceed some threshold (e.g. 50%)
at any time before the next network upgrade. After the additional capacity has been
installed, the network is monitored to determine if the link utilization is remaining
below the threshold. If utilization on one link is consistently above this threshold,
then the network operators will modify the routing protocols in order to distribute
the excess traffic on other, more lightly loaded links. As we will see in Chapter 2.

this approach is successful at achieving a network with minimal queuing delays.

1.4 Internet Backbone Networks

In the context of [P backbone networks. two factors make the bandwidth provision-
ing approach attractive. First, there are costs associated with traffic differentiation.
While some of this cost is related to the additional complexity required in network
routers, much of the cost is associated with the management and operation of the

network. Installers must be trained to configure the traffic differentiation mechanisms
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when routers are installed in the network, network operators must be trained to man-
age the different traffic classes, and the operators must be able to troubleshoot the
various traffic differentiation mechanisms when problems occur.

A second factor which makes bandwidth provisioning attractive is that traffic
differentiation may not provide much benefit in backbone networks. A goal of packet
switched networks is to aggregate traffic from many users so as to reduce the amount of
resources required in the network. Consider two users who transmit data at an average
rate of 1 Mb/s, but over short periods of time can transmit at a peak rate of 2 Mb/s.
If each of these users were to reserve a dedicated circuit for their communication,
each would need to reserve 2 Mb/s of bandwidth. However, it is unlikely that both
users will be simultaneously transmitting at their peak rates. Therefore, if the traffic
from both users is combined, it may be sufficient to provide only 3.5 Mb/s, rather
than 4 Mb/s for the aggregate traffic. There will be occasional periods when both
users do simultaneously transmit at their peak rates and some queuing delay will be
experienced.

Traffic in backbone networks is aggregated from between 10,000 and 300,000 users.
As a result of the high degree of aggregation, as well as due to the low packet trans-
mission times (a 1500 byte packet takes only 5 us to transmit on a 2.5 Gb/s OC-48
link), it is expected that queuing delays in backbone networks will be low, and traffic

differentiation may not provide much benefit.



CHAPTER 1. INTRODUCTION 19

1.5 Thesis Contributions

This thesis studies the feasibility of the bandwidth provisioning in the context of
Internet backbone networks. In particular, we develop a procedure to determine the
bandwidth required in an Internet backbone network to meet a constraint on the
end-to-end delay which is experienced in the network.

The bandwidth requirements are dependent on the characteristics of backbone
traffic. The characteristics of such traffic, however, are not currently well understood.
Nearly all work on traffic analysis has used measurements of traffic whose average rate
was between 200 kb/s and 10 Mb/s. At the time these measurements were collected,
they represents very large traffic volumes. Links in today’s backbones, however, carry
traffic volumes which exceed 1 Gb/s. The first contribution of this thesis is the design
and deplovment of a traffic measurement system which collects detailed packet-level
measurements from high-speed backbone links. This system is deployed in the Sprint
[P backbone, a commercial Tier-1 network. Measurements collected with this system
are used for this study as well as for a wide range of research projects undertaken by
the Sprint Advanced Technology Labs. The architecture of the measurement system
and observations on backbone traffic are presented in Chapter 2.

The measurements confirm that backbone traffic is aggregated from a large number
of users, and that the average rate of these users is much smaller than the total link
capacity. Only 1% of users ever exceed a rate of 500 kb/s, even on 2.5 Gb/s backbone
links. As a result of this large degree of aggregation, we expect that the statistical

properties of the traffic arrival process should have Gaussian distributions. From the
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measurements we find that this is the case for backbone traffic and that it can be fully
described by Gaussian distributions. The second contribution of this thesis is a traffic
model which we call two-scale Fractional Brownian Motion (FBM) which captures
the observed Gaussian behavior of backbone traffic. This is an extension of traditional
Fractional Brownian Motion which was originally proposed as a model for network
traffic in [83],[112]. In Chapter 3 we present this model and derive expressions for the
delay distribution of queue fed by two-scale FBM. We also develop a procedure to
compute the end-to-end delay through a network where the aggregate network flows
are modeled with two-scale FBM.

This finding seemingly contradicts earlier work on traffic modeling which found
that network traffic is quite complex, especially when looked at over time intervals of
less than 100 ms, and therefore second-order Gaussian models can be quite inaccurate
[38]. However. as mentioned above, {38|, as well as most other traffic measurement
studies, consider traffic with an average rate of less than 10 Mb/s. In this thesis we
find that for highly aggregated traffic (greater than 50 Mb/s), and for some mod-
erately aggregated traffic (between 5Mb/s and 50Mb/s), the traffic arrival process
at time scales between 1 ms and 100 ms is Gaussian. We also find. consistent with
earlier measurements, that traffic with low aggregation (less than 5 Mb/s) cannot be
described using second-order models.

Using the two-scale FBM model, we can develop several procedures to evaluate
the bandwidth required to support a particular end-to-end delay constraint. One

approach is to derive a constraint on the delay for a single link in the network based
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on the total end-to-end delay which is allowed (e.g. divide the total end-to-end delay
evenly among all links on a path through the network). Using the two-scale FBM
model, one can determine the amount of bandwidth required on each link to meet such
delay constraint. Using a set of over 300 one-hour traffic measurements, we derive two-
scale FBM model parameters for “average” backbone traffic as well as for the “most
variable” backbone traffic. Using these models we determine the maximum utilization
at which backbone links may be operated and still satisfy various delay constraints.
However, determining how to divide the end-to-end delay among the different links
in the network can be quite difficult. We therefore develop two algorithms which
consider the entire network and determine the bandwidth required on each link in
the network so that the end-to-end delay constraints are satisfied. Finally we consider
the problem of rerouting traffic to take advantage of excess network capacity which
is available in cases where it is not possible to add network bandwidth in a timely

fashion. The algorithms and results are presented in Chapter 4.
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Chapter 2

Internet Backbone Traffic

Measurements

2.1 Introduction

Most work on network traffic modeling and analysis has been based on traffic mea-
surements collected in the early 1990s from links between universities and the Internet
or links between large corporate research labs and the Internet. These measurements
were collected at Bellcore [67], the University of California Berkeley and the Univer-
sity of Southern California [28], the Lawrence Berkeley Laboratory [92|, an academic
network between the United States and the United Kingdom [111], at DEC Western
Research Laboratory, and from the coNCert network in North Carolina. At the time
these measurements were collected, they represented high volume WAN traffic and

were the best data available. However, these measurements are not representative of
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traffic in today’s commercial backbone networks. Commercial backbones carry much
larger volumes of traffic (10s of Mb/s to 10s of Gb/s rather than the 200 kb/s to 10
Mb/s observed in the prior measurements), and the applications that generate the
traffic in today’s network are much different than the applications used in the early
1990s.

Unfortunately, traffic measurements from commercial backbone networks are not
easy to acquire. Unlike the NSFNET backbone which had extensive monitoring facil-
ities [20], commercial networks frequently only collect measurements of the average
traffic volume. Furthermore, measurement data is often proprietary and not released
for academic research.

Some measurement data from commercial backbone networks is available. Data
from the MCI backbone has been published in [108] and [19]. These measurements
consist of information about the individual user flows observed on several links in the
MCI network. This information is sufficient to study the types of applications which
generate network traffic and the characteristics of user flows. Flow measurements,
however, do not provide information about the packet arrival process which is needed
to study queuing delay and related network design problems. Some packet-level mea-
surements are available from the NASA Ames Internet Exchange [74|, and from the
NLANR Passive Measurement and Analysis project 73|, but the duration of these
measurements is only 90 seconds to several minutes.

In order to obtain traffic measurements needed to support various research projects,
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[\]
(4]

the Sprint Advanced Technology Labs began developing the [IPMON measurement fa-
cility in 1999. The goal of the IPMON facility is to collect traffic measurements from

multiple locations in the Sprint [P backbone network in order to study:

e Characteristics of backbone traffic - traffic composition in terms of applications

and protocols, characteristics of individual TCP flows, packet arrival patterns.

e Network performance - delay and loss experienced through the Sprint network,
as well as end-to-end delay and loss performance that can be inferred from

traffic observations.
Three measurement techniques were considered for the design of the IPMON system:

1. Active measurement systems

(S

. Flow-level measurement systems

3. Packet-level measurement systems

Active measurement systems transmit probe traffic into the network and measure
the loss and delay performance of these probes. This provides a good mechanism to
evaluate average network performance, but measuring rare events, such as the longest
1% of delay experienced by packets, requires a large amount of probe traffic.
Flow-level measurement systems collect information such as the start time, du-
ration, number of packets, and number of bytes for each individual user flow in the
network. However, as mentioned above, flow-level measurements do not provide in-

formation about the packet arrival process which is needed to study queuing delays.
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Furthermore, flow-level measurements do not provide information about network per-
formance.

Packet-level traffic measurements record the header and timestamp of every packet
transmitted on a link in the network. This type of measurement provides the most
detailed view of network traffic. The drawback to such systems is that they collect
a much larger volume of data than the other two approaches. For a given amount of
storage, flow-level systems or active measurement systems can collect measurements
for a much longer period of time than packet-level measurements. However, it is pos-
sible to provide enough storage in a PC-based measurement system to collect several
hours of data which is sufficient to study the problems in which we are interested.
We therefore decided to use the packet-level measurement approach.

The remainder of this chapter describes the architecture of the IPMON facility
and uses measurements collected in August 2000, September 2001, and April 2002
to characterize traffic in the Sprint IP backbone. Section 2.2 reviews other network
traffic measurement systems and motivates the need to design new measurement
facility. Section 2.3 describes the details of the measurement system. Section 2.4
performs a high level analysis of the traffic. A detailed analysis of the packet arrival

characteristics is postponed to Chapter 3.

2.2 Existing Measurement Systems

Many systems have been developed to collect network traffic measurements. These

systems can be classified into three general categories: packet level measurement
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systems, flow level measurement systems, and network performance measurement
systems.

Packet level measurement systems are designed to collect detailed information
about each packet transmitted on a single link in the network. These systems can be as
simple as a computer running tcpdump [57] connected to a shared Ethernet segment.
tcpdump records the header information of packets received on the computer’s network
interface and the time at which each packet was received. It can be configured to
record the header information for all packets observed on the link or only for packets
whose header matches a certain pattern (e.g. all packets with a particular destination
IP address). Measurements collected by such systems have been used in many prior
traffic analysis studies such as [90]. AT&T has also developed a tcpdump based
measurement systems known as the PacketScope for FDDI and T3 links {2].

A shortcoming of the tcpdump based systems is that the packet timestamps are
only as accurate as the system clock of the computer which is used to collect the
measurements. To improve the accuracy of the system clock, the Network Time
Protocol (NTP) is used to synchronize the computer system to UTC (Coordinated
Universal Time) [78],[80]. The details of the operation of NTP are presented later
in this chapter, but in general, NTP can synchronize the system clock to within
tens of milliseconds of UTC. Adding dedicated clock synchronization hardware and
modifications to the operating system can provide synchronization to within tens of
microseconds of UTC [79]. However, there is still an undetermined amount of error in

the timestamp, since the timestamp is recorded when the operating system receives
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the packet from the network interface, not the time at which the packet was actually
observed on the link. The packet spends some period of time in the receive buffer on
the network interface card.

To improve the timestamp resolution, several custom packet measurement systems
have been developed. These systems require dedicated hardware which timestamps
the packets immediately when they are received at the network interface. These
systems include an Ethernet packet level measurement system [68| whose data has
been used in [67],{112], an FDDI packet level measurement system whose data has
been used to study user billing policies [33], and a measurement system for OC-3
and OC-12 ATM links known as OCxMON [3|,[108},{19]. The OCxMON systems are
very similar to the IPMON system, but they have two primary differences. At the
time when the [PMON systems were deployed, the OCxMONSs only supported ATM
networks. The Sprint network uses the Packet over Sonet (POS) protocol rather
than ATM, so the OCxMON could not be used in our network! . Furthermore,
the OCxMON are only capable of recording the packet data in main memory of the
measurement system, and they are unable to store the data to disk. As a result, the
systems can only collect several tens of minutes of data on a moderately loaded OC-3
or OC-12 link. The IPMON systems have enough processing power to record the
packet data directly to disk and can record data for several hours.

Flow-level measurement systems record information about each user flow observed

! After deployment of the IPMON system, the OCxMONs (now known as CoralReef) were mod-
ified to support POS.
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on a link in the network. Typically a flow is defined as a sequence of packets trans-
mitted between the same source and destination IP address which have the same [P
protocol number and source and destination TCP/UDP port numbers. The informa-
tion collected for each flow typically includes the flow start time, the flow duration,
and the number of bytes and packets transmitted in the flow. The systems which
collect flow level statistics are the OCxMON systems [108],{19],[74| (these systems
can be configured to collect either packet or flow level measurements); NeTraMet
[14], an implementation of the Internet Engineering Task Force’s (IETF) Realtime
Traffic Flow Measurement system [15|; and Netflow (81|, a capability built in to Cisco
routers which allows the routers to collect and export flow information to an external
data collection system. Netflow data can be analyzed using an application known as
cflowd [76]. AT&T has developed an extensive measurement system to collect and
analyze Netflow data from their network [16},[39],[0].

Packet-level and flow-level measurement systems provide information on the traf-
fic carried by the network, but they do not provide information about network per-
formance. To measure the loss and delay performance of a network, systems are
designed to inject probe traffic into the network and measure the performance seen
by the probe traffic. These systems are frequently referred to as ective measurement
systems since they actively transmit data into the network. Flow and packet level
measurement systems are referred to as passive measurement systems since they just
observe network traffic.

Network performance measurement systems include the Network Probe Daemon
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(NPD) [93],[94] which has evolved into the National Internet Measurement Infras-
tructure (NIMI) [91],|89], the PingER system which uses ping messages to monitor
network performance between high energy particle physics research labs 73], and
the RIPE test traffic measurement project, which measures bandwidth and delay
performance between 24 sites in Europe, North America, and Israel [109].

These systems, however, have the same timestamp accuracy problems as described
above for the tcpdump measurement systems. The timestamps are accurate enough
to measure the round-trip time of network paths and they are capable of measuring
losses, but they cannot measure one-way delays. The Surveyor project [39], on the
other hand, has deployed a set measurement systems which are synchronized using
the Global Positioning System (GPS). These systems are designed to measure one

way delays through the network.

2.3 IPMON Architecture

The IPMON measurement facility is composed of three components. A set of mon-
itoring entities which collect the packet trace measurements, a data repository used
to archive the packet traces, and a data analysis system used to process the traces
offline. This section describes the packet traces and each of these components in

detail.
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bytes field description
0 64 bit
4 timestamp
8 record size (fixed to 64 bytes)
12 POS frame length
16 POS header
20 First 44 bytes of IP packet

64
Table 2.1: Packet record format

2.3.1 Packet Trace Format

A packet trace is a sequence of records which contain information about each packet
observed on a link. The format of a packet record is shown in Table 2.1. Each packet
record contains a 64-bit timestamp corresponding to the time at which the packet was
observed on the link, a record size field, the length of the Packet-over-SONET (POS)
frame which contained the [P packet, the POS header, and the first 44 bytes of the [P
packet. The record size field is currently fixed to 64 bytes, and is included to support
future systems with variable record sizes. The POS frame length is used to determine
the actual size of the IP packet. The IP packet itself contains size information, but
this information can be incorrect so the POS frame length is used to determine the
actual packet size.

Packet-over SONET (POS) is the protocol used by Sprint and several other com-
mercial IP backbones to carry IP network traffic directly over SONET optical net-
works. The POS protocol is specified in [56], and is similar to the PPP-over-SONET

protocol described in {102],[103]. The protocol encapsulates a single IP packet into
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a POS frame. The framing consists of 4 bytes of header information and 2 bytes of
trailer. The POS header contains a protocol field which is used to identify records
which do not contain [P packets. These records correspond to “hello” messages and
other data transmitted directly between the two routers.

The first 44 bytes of the [P packet contain the 20 byte IP header, as well as the 20
byte TCP header or 8 byte UDP header that is commonly used for most packets. The
format of a standard TCP/IP and UDP/IP packet is shown in Figure 2.1. There are
some packets which have extra header options in addition to those shown in Figure
2.1. For these packets, the headers may extend past the first 44 bytes which are
recorded, and we may lose information. Fewer than .0003% of the packets we observe
contain IP options, but 10% - 15% of the packets contain TCP options [42]. For
the packets which contain TCP options, the first 14 bytes of the packet contain the
standard TCP header fields, but not the optional fields.

The packet traces can be used for many purposes. The IP headers contain in-
formation about the source and destination of the packet, and such information can
be used to study how much traffic is flowing between different source/destination
combinations. The TCP and UDP headers identify the application which generated
the traffic, and can be used to study application characteristics. Information about
individual TCP and UDP flows can be reconstructed by classifying to which flow
each packet belongs. By analyzing the sequence numbers of the TCP flows, we can
infer the round-trip-time of the TCP connections as well as the number of losses and

retransmissions. To study network performance, the packet traces can be input into
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Figure 2.2: IPMON monitoring entity architecture

Disk array

a network simulator. The results of the simulation can be compared to various traffic
models in order to evaluate the accuracy of the models. Finally, the packet traces can
be used to evaluate the delay performance of the existing network. If measurements
are collected at multiple points, measuring the delay is simply a matter of comparing
the timestamps of a packet as it is observed at the multiple locations . Using packet
traces to measure network performance has two advantages over active measurement
systems. First, the performance of actual user traffic is measured. We therefore do
not need to determine the appropriate method in which to transmit the probe pack-

ets. Second, we do not need to worry about affecting network performance with probe

traffic.



CHAPTER 2. INTERNET BACKBONE TRAFFIC MEASUREMENTS 35

2.3.2 IPMON Monitoring Entities

The [PMON monitoring entities collect the packet traces. To collect packet traces,
an optical splitter is installed on a single optical fiber which is to be monitored. It is
important to note that a connection between two routers consists of two individual
fibers, one for each direction. A separate splitter and measurement entity is needed
to monitor each direction. The splitter creates a duplicate of the optical signal on the
fiber, and this duplicate is input into an [IPMON monitoring entity. The monitoring
entities are a high-end Linux PC with a large disk array and a SONET network
interface, known as the DAG card {21]. Two versions of the [IPMON systems have
been developed. One version is used to monitor OC-3 and OC-12 links, while a
second version with a larger disk array and higher-speed internal system bus is used
to monitor OC-48 links.

The IPMON monitoring entities operate as shown in Figure 2.2. The output of
the optical splitter is connected to the DAG card which decodes the SONET payvload
and extracts the Packet-over-SONET (POS) frames. The DAG card extracts the first
48 bytes of each POS frame and adds a timestamp indicating the time at which the
frame was received. The first 48 bytes contain 4 bytes of POS header and the first
44 bytes of the IP packet?. The timestamp and data are then transferred to main
memory in the PC using DMA. The format of the packet record is shown in Table
2.1. If the IP packet contains fewer than 44 bytes (as is the case for small UDP and

other non-TCP packets), the data is padded with all 0’s.

2The DAG card processes data in 48 byte units since it was originally designed to operate in
ATM networks which carry 48 bytes of user data in each ATM cell.
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Once 1 MB of data has been copied to main memory, the DAG card generates
an interrupt which triggers an application to copy the data from main memory to
the hard disk. This may seem to be an inefficient process, the data is copied first
to memory and then to disk. A more logical solution would be to copy the data
directly to disk and bypass main memory. However, as described later in this section,
the disks do not have enough bandwidth to be able to handle bursts of very small
packets, and the DAG cards do not have enough on-board memory to buffer these
bursts. It is therefore necessary to use main memory as a large buffer so as to not
overload the hard disks. The DAG card collects data for a predetermined period of
time (e.g. 24 hours), or until the disk space is exhausted. After the data collection is
complete, the data is transferred to the lab for offline analysis.

There were five design issues addressed in the development of the [PMON moni-

toring entities:

e How to support monitoring 155 Mb/sec OC-3 links, 622 Mb/s OC-12 links and
2.5 Gb/sec OC-48 links.

How to synchronize the timestamps generated by separate IPMON entities.

e How to minimize the physical space consumed by the monitoring entities.

How to prevent unauthorized access to trace data.

How to support complete remote administration.

Next we describe how each of these requirements are met in the system design.
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OC-3 | OC-12 | OC-48
link rate (Mb/sec) 155 622 2480

peak arrival rate (Mpackets/sec) | 0.48 1.9 7.6
peak capture rate (Mb/sec) 248 995 3968

average capture rate (Mb/s) 49 199 793

1 hour trace size (GB) 11 42 176

Table 2.2: Data rate requirements
Monitoring High-speed Links

The primary difficulty with monitoring backbone links is the high rate at which the
packet records must be stored to disk. The highest rate of packet arrivals occurs when
a burst of very small packets arrives at the DAG card. Considering 40 byte packets
(the minimum size TCP packet), the peak arrival rate is 0.48 Mpackets,/s on an OC-3
link, 1.9 Mpackets/s on an OC-12 link, and 7.6 Mpackets/s on an OC-48 link. Since
the DAG card creates a 64 byte record for each of these packets, the rate at which
measurement data is generated ranges from 248 Mb/s for an OC-3 link to 3.97 Gb/s
for an OC-48 link. Unfortunately, the RAID disk arrays used in the IPMON system
do not have enough capacity to support this peak rate. The RAID array on the OC-3
and OC-12 systems can record data at a rate of 240 Mb/s (30 MB/s), while the RAID
array on the OC-48 systems can record data at 720 Mb/s (90 MB/s). If the traffic
on a network link was a constant stream of 40 byte packets, we would be unable
to record packet traces. However, network traffic is a mix of packet sizes. In our
measurements we find that the average packet size on a link ranges from 200 bytes
to 500 bytes depending on the link (some links carrv a large number of 40 byte TCP

ACK packets while others carry a large number of 1500 byte TCP data packets).
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Therefore, the average rate at which packet records are created is much less than the
peak arrival rate. Considering an average packet size of 200 bytes, the RAID disk
array only needs to have a bandwidth of 49 Mb/s for the OC-3 systems, 199 Mb/s
for the OC-12 systems and 793 Mb/s for the OC-48 systems. The OC-3 and OC-12
systems are capable of capturing data at full line rate, but the OC-48 systems can
only collect data up to 91% link utilization. Fortunately, the utilization of the OC-48
links in the network never reaches this value. These results are summarized in Table
2.2.

While the disks have sufficient bandwidth to record measurements at the average
rate of the traffic, over short intervals of time, traffic can arrive at the peak rate. When
this occurs, the data must be buffered until it can be recorded on disk. There is very
little memory onboard the DAG card, so the data is buffered in main memory. This
introduces another potential bottleneck in the system. The PCI bus which connects
the DAG card to main memory as well as the main memory to the hard disk only
has a bandwidth of 1056 Mb/s (132 MB/s) for the 33 MHz, 32 bit PCI bus in the
OC-3 and OC-12 systems, and 4224 Mb/sec (528 MB/sec) for the 66 MHz, 64 bit PCI
bus in the OC-48 systems. A single bus does not have sufficient bandwidth transfer
data at the peak rate from the DAG card to main memory and at the average rate
from main memory to disk using a single bus. We therefore use systems which have
separate PCI busses for the DAG card and for the hard disk arrayv. This architecture
allows the IPMON monitoring entities to sustain data capture, even at OC-48 link

speeds.



CHAPTER 2. INTERNET BACKBONE TRAFFIC MEASUREMENTS 39

Timestamp Requirements

The second requirement for the IPMON monitoring entities is that the clocks which
generate the packet timestamps must be synchronized between systems. With syn-
chronized timestamps, we can measure network delay between two links by identifying
a packet in a trace collected on the first link, identifying the same packet in trace
collected on the second link, and compute the difference in timestamps.

This requirement is accomplished by synchronizing a 16 MHz clock on board the
DAG card with a Global Positioning System (GPS) reference clock. The clock syn-
chronization operates in the following manner as described in the DAG documentation
[77]. The DAG clocks are initially loaded with the absolute time from the PC’s system
clock (e.g. 7:00 am Aug 9, 2000 PST). The PC system clocks are all synchronized to
within 100 ms using NTP [80]. This guarantees that the initial time loaded into the
DAG clocks is accurate to within 200 ms. However, 200ms is insufficient accuracy to
measure network delays which can be less than 1 ms. Furthermore, the clock synchro-
nization degrades over time. The crystal oscillators which generate the clock signal
do not run exactly at 16 MHz. They will be slightly faster or slower depending on the
temperature of the system and the quality of the oscillator. This clock drift causes
the synchronization error to increase over time. To correct for this, a GPS receiver is
installed at each monitoring site. The GPS receiver uses satellite signals to establish
a reference clock which is synchronized to within 500 ns of UTC. The GPS receiver
outputs a single clock pulse at the beginning of each second. This pulse-per-second

(PPS) signal is distributed to the DAG cards in the IPMON measurement entities.
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When the DAG card receives the first PPS signal after initialization, it resets the
lower 24 bits of the clock counter (Note: 24 bits will count from 0 to 16 million - 16
MHz. If the lower 24 bits of the clock are all 0 it represents the beginning of a second).
Thereafter, each time the DAG card receives the 1 PPS signal, it compares the lower
24 bits of the clock to 0. If the value is greater than 0, the oscillator is running a little
bit fast and the DAG card decreases the frequency slightly. If the value is less than
0, the oscillator is running a little bit slow and the DAG card increases the frequency
slightly. There is an initial period when the PPS is attempting to correct the initial
clock skew, so we ignore the first 30 seconds of each trace to account for this.

There are several sources of error that may occur in the synchronization system.
First, the GPS receivers at different locations may have up to a 500 ns difference in
the PPS signals which they generate. Furthermore, it takes some amount of time
for the PPS signal to travel along the cable between the GPS receiver and the DAG
cards. The difference in propagation delay between the shortest and longest cable
is approximately 30 ns. The final source of error is in the fact that synchronization
happens only at 1 second boundaries. Between two PPS pulses, the DAG clock can
accumulate some error. To test this aspect of performance, we measure the maximum
clock error that is observed when the DAG card receives a 1 PPS interrupt. The
maximum value we have seen in lab tests is 30 clock ticks which represents an error
of 1.79 us. The median error observed during these tests was 1 clock tick, or 59.6
ns. Combining these three factors, the worst case difference between any two DAG

clocks is less than 2 us.
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While the DAG clocks are accurate to within 2 us, there is another source of
error in the timestamp generated by the OC-3 and OC-12 DAG cards. The packet
timestamps are generated after the SONET data has been decoded. As the OC-
3 and OC-12 cards were initially designed to operate on 33 byte ATM cells, data
is transferred between the SONET framing chip and the chip which generates the
timestamps in 53 byte units. In a Packet-over-Sonet network, this 53 byte unit may
contain multiple packets. For example, it could contain one 40 byte packet as well as
the first few bytes of a second packet. The DAG card considers both of these packets
to have arrived simultaneously, when in fact their inter-arrival time was 2 us for OC-3
links or 0.5 us for OC-12 links. This results in an additional 2 us of timestamp error.
The OC-48 systems use a newer SONET framing chip which was designed to support
POS directly and does not use 53 byte buffers. The cumulative effect of these errors

is a maximum 4 us of clock skew between DAG cards.

Physical Requirements

The IPMON monitoring entities are installed at operational network sites where phys-
ical space is limited. It is therefore important to minimize the amount of physical
space which is needed by the [PMON measurement entities. For a network switch
site, physical space is measured in terms of how much vertical rack space is used by
the system. One unit (1U) of rack space corresponds to 1.75 inches.

The component in the [IPMON measurement entities which takes up the largest
amount of physical space is the hard disks. The challenge, therefore, is to achieve

the optimal balance between physical size and hard disk capacity. The amount of
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data generated for one hour of trace measurements is shown in Table 2.2. Using a
rack-optimized system, the OC-3 and OC-12 IPMONSs are able to accommodate 108
GB of storage in only 4U of rack space. This allows the system to record data for 9.8
hours on a fully utilized OC-3 link or 2.6 hours on a fully utilized OC-12 link. The
OC-48 systems have a storage capacity of 360 GB, but in a slightly larger 7U form
factor. This is sufficient to collect a 2 hour trace on a fully utilized link. However, as
we will see from the trace measurements, link utilization rarely exceeds 50% during
the busiest hours of the day, and is frequently much lower during the nighttime hours.
As a result, we are typically able to collect traces which last from 10 - 48 hours.
The amount of data collected in the packet traces is both the major advantage
and the major disadvantage of the [IPMON facility. Packet level measurements pro-
vide very detailed information about network traffic. However, it is not possible to
collect such measurements from every link in the network, nor is it possible to collect
measurements over days or weeks at a time. This is therefore not a practical solution
for operational monitoring of an entire network. Instead, the goal of these traces is

to provide researchers and network operators with a better understanding of network

traffic.

Security Requirements

The IPMON measurement entities collect proprietary data about the traffic on the
Sprint IP backbone. Preventing unauthorized access to this trace data is an impor-

tant design requirement. To accomplish this, the systems are only accessible using
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two applications: ssh and NTP. ssh is an authenticated and encrypted communica-
tion program similar to telnet that provides to access a command line interface to
the system. This command line interface is the only way to access trace data that
has been collected by the system and to schedule new trace collections. ssh only
accepts connections from a server in our lab and it uses an RSA key based system to
authenticate users. All data that is transmitted over the ssh connection is encrypted.

The second type of connection accepted by the IPMON measurement entities is
for NTP traffic. NTP synchronization is performed by establishing a broadcast NTP
server on the LAN to which the IPMON measurement entities are connected. The
entities only accept NTP messages which are transmitted as broadcast messages on

a local network used exclusively by the IPMON systems.

Remote Administration Requirements

In addition to being secure, the IPMON systems must also be robust against failures
since they are installed in remote sites which are not always accessible. To detect
failures, a server in the lab periodically sends query messages to the IPMON systems.
The response indicates the status of the DAG cards and of the NTP synchronization.
If the response indicates either of these components has failed, the server attempts to
restart the components. If the server is not able to correct the problem it notifies the
system administrator that manual intervention is required. In some cases, even the ssh
connection will fail, and the systems cannot be accessed over the network. To handle
this type of failure, the systems are configured with a remote administration card that

provides the capability to reboot the machine remotely. The remote administration
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card also provides remote access to the system console during boot time. In cases
of extreme failure, the system administrator can boot from a write-protected floppy
installed in the systems and completely reinstall the operating system remotely.
The one event that cannot be handled remotely is hardware failure. While it is
possible to design a system with redundant hardware, such systems are quite costly.
Since the monitoring systems play no role in the direct operation of the network, we

decided hardware redundancy was unnecessary.

2.3.3 Data Repository

The data repository is a large tape library responsible for archiving the trace data.
Once a set of traces has been collected on the IPMON systems, the trace data is
transferred over a dedicated OC-3 connection from the [IPMONs to the data reposi-
tory.

A single 24-hour-long trace from all of the monitoring systems currently installed
consumes approximately 1.2 TB of disk space (this will increase to 3.3 TB when the
additional 20 systems are installed). The tape library has 10 individual tape drives
which are able to write data at an aggregate rate of over 100 MB/sec. The rate at
which the data can be transferred from the remote systems, however, is limited to 100
Mb/sec which is the capacity of the network interface cards on the IPMON systems.
At this rate the raw data would take 26.4 hours to transfer from the IPMON systems
to the tape libraryv. To improve transfer time and decrease the storage capacity

requirements, the trace data is compressed before being transferred back to the lab.
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Using standard compression tools such as gzip, we are able to achieve compression
ratios ranging from 2:1 to 3:1 depending on the particular trace characteristics. This
reduces the transfer time to about 12 hours.

This transfer time presents another difficulty when exhaustively monitoring a
network for operational purposes. An alternative solution would be to avoid the data
repository and perform the analysis on the monitoring systems themselves. This
is a good solution if there is a single type of analysis that is being performed on
the traces. However, the data is used for many research projects, and some of the
analysis performed in several projects requires multiple iterations through the trace.
In addition, we would like to keep an archive of the collected data so that it may be

used for future projects.

2.3.4 Analysis Platform

All data analysis is performed off-line by a cluster of 16 Linux PCs. The software

tools used to perform the analysis are described below.

Single Trace Analysis Tools

This is the most general category of analysis in which a single trace is processed in
order to analyze a particular characteristic of the network. This includes computing
the packet size distribution or detecting denial of service attacks. Such types of anal-
ysis are performed using custom analysis programs developed to study the particular

characteristic of interest.
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Figure 2.3: TCP 3-way handshake
Flow Analysis Tools

Flow analysis is performed in order to investigate the behavior of individual user
connections. A user flow is defined as a sequence of packets with the same source
and destination IP address, the same IP protocol (e.g. TCP or UDP), and the same
source and destination TCP or UDP port number. This type of flow would represent,
for example, the download of a web page or the transmission of an email message.
The IP group at Sprint has written a utility which generates a set of records for every
flow observed in a single trace. These records contain the source and destination IP
address, the source and destination port, the IP protocol, the duration of the flow, the
number of packets transmitted in the flow, and the total number of bytes transmitted
in the flow. For TCP flows, it also records the number of TCP retransmissions, the
number of out-of-sequence packets, the round-trip-time estimated for the flow, and
the total amount of user data transmitted in the flow.

The round-trip time (rtt) of a TCP flow is estimated using a procedure similar to
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the one described in [54] and [71]. A TCP connection is initiated using the three-way
handshake shown in Figure 2.3. The client transmits a SYN message to the server, the
server responds with a SYN-ACK message immediately after receiving the SYN, and
the client responds with an ACK message immediately after receiving the SYN-ACK.
Since the responses are immediate (unlike ACK responses for data packets which are
typically delayed up to 200 ms in order to “piggyback” multiple ACKs), the time
between the initial SYN message and the ACK message which finishes the handshake
provides a reliable estimate of the actual rtt of the connection. However, a single
trace contains traffic only in one direction. For some flows we observe the initial SYN
and the final ACK message. For other flows we only observe the SYN-ACK. We are
only able to estimate the rtt for the flows in which we observe the initial SYN and
final ACK message.

The number of retransmissions and out-of-sequence packets are determined by
inspecting the TCP sequence number of each packet in the flow. If we observe a
packet with the same sequence number as an earlier packet in the flow, it is considered
a retransmission. If the sequence number of a packet is not the same as the expected
TCP sequence number, we consider it to be out-of-order. It is important to note that
these statistics only represent the number of retransmissions and out-of-order packets
that we can observe in our measurements. There are retransmissions and out-of-order
packets which we cannot detect. For example, if the source transmits a packet and
it is lost before reaching the Sprint network, the source will retransmit the packet.

However, we will not be able to detect this retransmission. Qur measurements are
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therefore a lower bound on the actual number of retransmissions and out-of-sequence
packets.

The total amount of user data transmitted is also determined using the TCP
sequence numbers. The sequence numbers count the number of bytes transferred in
the connection. Even though we only monitor traffic in one direction, we can use
the sequence number of a packet and the ACK sequence number to determine the
amount of user data transferred in both directions of the connection.

The flow analysis tool is very similar to the CoralReef tools developed by CAIDA

[61]. We used CoralReef to validate the accuracy of our own flow analysis tool.

Timescale Analysis Tools

We have developed a tool to compute various statistics (e.g. number of packets,
number of bytes) about the trace over small intervals of time. For example, this tool
computes the number of bits that are transmitted every second or every minute for
the duration of the trace. This type of analysis forms the basis for the traffic model

discussed in Chapter 3, and will be discussed in detail in that chapter.

Delay Analysis Tools

[f a packet is observed in a trace at time ¢t and the same packet is observed in a
second trace at time ¢t + A, then the delay incurred by the packet between the two
monitored links is simply A. The key to measuring delay is to be able to identify an
individual packet as it travels across multiple links in the network. The only three

pieces of information that should change as a packet travels through the network are
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the TTL, TOS and checksum fields in the IP header. Using the remaining 40 bytes
of data we collect for each packet, we can, in general, uniquely identify a packet.

To measure network delay, we developed a tool which identifies a unique packet
in one trace and searches for the same packet in one or more additional traces. If the
packet is found, the delay between the two links is computed by taking the difference
between the timestamps. Due to the extremely large size of the trace, it was necessary
to develop an efficient algorithm to perform this search process. Details of the search
algorithm can be found in [86].

In some cases it is possible for two separate packets to have the same 40 bytes. In
theory this should happen infrequently since the ID field for each packet generated
by a particular source should be unique. In the traces we collect we do observe
duplicate packets due to sources generating incorrect IP id fields or due to link layer
retransmissions, but these packets only represent .001% to 0.1% of the total traffic
volume [42]|. In these cases, we typically ignore all packets which have duplicate

values.

Tools for Identifying Traffic Subsets

A very useful property of packet traces is that certain packets can be extracted from
the trace, and the characteristics of these subsets can be studied. For example, one
could extract all packets which have a certain range of destination IP address. or one
could extract all packets which correspond to web traffic. To facilitate such studies,
we developed a program to identifyv all packets which match a certain criteria. These

routines can be embedded in other analysis programs, or they can be used to create
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a separate packet trace containing only the selected packets.

Simulation Tools

Packet traces are also useful in that they can be input into a network simulator.
We have written a simulator which reads multiple traces and simulates injecting
the packets from the trace into a single FIFO queue. By combining many queuing
simulations, one can simulate complex network topologies. Such simulations will be

used later in this chapter and in Chapter 3 to evaluate how reducing the capacity of

the network would affect queuing delay.

2.4 Measurement Results

In this section we characterize backbone network traffic in terms of the workload
characteristics (traffic volume, application mix, etc.) and flow characteristics. We
also report on the delay measured between multiple locations in the network. We

begin by describing the architecture of the Sprint network and the set of packet

traces which are used in the analysis.

2.4.1 Sprint Network Architecture

The Sprint IP network consists of a set of sixteen nodes known as Points-of-Presence
(POPs) connected by high bandwidth OC-48 WAN (wide area network) links. Each

POP has a two layer architecture shown in Figure 2.4%. At the highest layer, the

3Figure 2.4 only shows 15 of the 16 POPs in the Sprint network. It is intended to be a concep-
tual diagram of the Sprint network and does not necessarily reflect the exact network topology or
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Figure 2.4: IPMON architecture

WAN links are connected to a set of backbone routers. At the lower layer, links
to individual custotners, ranging in speed from 1.5 Mb/s T1 links to 2.5 Gb/s OC-
48 links, are connected to a set of access routers. Within the POP, the access and
backbone routers are interconnected in a tree mesh topology. The IPMON monitoring
entities monitor the links between the access routers and the backbone routers as well

as peering links which connect the Sprint network with other Tier-1 networks.

2.4.2 Traces

The traces used in this study were collected on three different days, Aug. 9. 2000,

Sept. 3, 2001, and Apr. 19, 2002. The Aug. 2000 measurements were all collected at

configuration.
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a single location on the west coast of the U.S. All of the monitored links from that
day are 155 Mb/s OC-3 links. The Sept. 2001 traces were collected from the same
west coast POP, as well as from two POPs on the east coast. All of the monitored
links in this day are 622 Mb/s OC-12 links. The Apr. 2002 traces were collected from
2.5 Gb/s OC-48 links in one east coast and one west coast POP. A summary of the
characteristics of each trace is given in Table 2.3.

The names of the trace measurements use the following convention: < POP_ NAME >-
<LINK#><LINK_DIRECTION >. The first part of the name identifies the POP
at which the measurements were collected. The second part of the name is a number
which identifies a link. Note that the monitored links change from one measurement
date to another. The last part of the name identifies the link direction. A single
link between two routers consists of two physical fibers. The trace collected by a
single measurement system corresponds to a single direction of a link. The traffic in
the opposite direction is recorded in a separate trace. In general, we monitor both
directions of each link. However, there are a few links for which we are able to only
monitor a single direction due to optical power constraints. Occasionally, the optical
power on one fiber will be much lower than the power on the opposite fiber. As a

result, we are able to monitor only the high power link.

2.4.3 Workload Characteristics

In this section we present general characteristics about the aggregate traffic observed

in each of the traces. Figure 2.5 shows the average traffic volume and the peak traffic
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name link type start time end time # of packets GB
(millions) transferred

WEST-01A 0cC-3 Wed 9Aug00 9:56 PST | Thur 10Aug00 9:55 PST 817 483
WEST-01B 0oC-3 Wed 9Aug00 9:56 PST | Wed 9Aug00 18:27 PST 326 108
WEST-02A 0C-3 Wed 9Aug00 9:56 PST | Wed 9Aug00 21:20 PST 853 397
WEST-02B 0cC-3 Wed 9Aug00 9:56 PST | Thu 10Aug00 1:30 PST 853 298
WEST-03A 0cC-3 Wed 9Aug00 9:56 PST | Wed 9Aug00 13:39 PST 284 169
WEST-03B 0cC-3 Wed 9Aug00 9:56 PST | Wed 9Aug00 19:34 PST 568 292
WEST-04A 0oC-3 Wed 9Aug00 9:56 PST | Thu 10Aug00 6:48 PST 568 175
WEST-04B 0cC-3 Wed 9Aug00 9:56 PST | Thu 10Aug00 5:06 PST 853 168
WEST-05A 0C-3 \Wed 9Aug00 9:56 PST | Wed 9Aug00 19:57 PST 568 193
WEST-05B ocC-3 Wed 9Aug00 9:56 PST | Wed 9Aug00 23:18 PST 853 161
WEST-06A 0C-3 Wed 9Aug00 9:56 PST | Wed 9Aug00 17:55 PST 284 121
WEST-06B 0cC-3 Wed 9Aug00 9:56 PST | Thu 10Aug00 5:03PST 568 244
WEST-07A 0cC-3 Wed 9Aug00 9:56 PST | Thu 10Aug00 9:55 PST 151 184
EASTI1-08A | OC-12 | Wed 5Sep01 8:00 EST | Wed 5Sep0t 19:02 EST 110 36.0
EAST1-08B | OC-12 | Wed 5Sep0l 8:00 EST | Wed 5SepOl 18:06 EST 1680 623
EASTI-09A | OC-12 | Wed 5Sep01 8:00 EST | Wed 3Sep01 14:17 EST 1120 645
EASTI1-09B | OC-12 | Wed 5Sep0l 8:00 EST Fri 7Sep0l 17:47 EST 1680 509
EASTI-10A | OC-12 | Wed 5Sep0l 8:00 EST | Thu 6SepOl 10:05 EST 1680 972
EASTI-10B | OC-12 | Wed 5Sep0l 8:00 EST | \Wed 5S2p0l 15:24 EST 1680 626
EAST2-11A | OC-12 | Wed 3Sep0l 8:00 EST | Thu 6Sep0l 8:00 EST 1340 313
EAST2-11B | OC-12 | Wed 5Sep01 8:00 EST Thu 6Sep0l 01:51 1340 1110
EAST2-12A | OC-12 | \Ved 5Sep0! 8:00 EST Thu 6Sep0l 00:07 1340 690
EAST2-12B | OC-12 | Wed 3Sep0! 8:00 EST Wed 5Sep0l 21:03 1120 459
EAST2-13A | OC-12 | Wed 3Sep0l 8:00 EST | Thu 6Sep0Ol 4:5¢ EST 1680 1150
WEST-14A | OC-12 | Wed 5Sep01 5:00 PST | Thu 6SepOl 21:02 PST 839 673
WEST-14B | OC-12 | Wed 5Sep01 5:03 PST | Mon 10SepOl 00:06 PST 1360 240
WEST-15A | OC-12 | Wed 5Sep0l 5:00 PST | Wed 5Sep0l 19:13 PST 206 16.9
WEST-15B | OC-12 | Wed 5Sep0l 5:00 PST Wed 5Sep0l 18:07 201 175
WEST-16A | OC-12 | Wed 5Sep01 5:00 PST | Wed 5SepOl 13:35 PST 1680 905
EASTI-17A | OC-i8 | Fri 19Apr02 13:00 EST | Fri 19Apr02 14:00 EST 908 335
EASTL-17B | OC-48 | Fri 19Apr02 13:00 EST | Fri 19Apr02 14:00 EST 667 380
EASTI-18A | OC-48 | Fri 19Apr02 13:00 EST | Fri 19Apr02 14:00 EST 590 253
EASTI1-18B | OC-i8 | Fri 19Apr02 13:00 EST | Fri 19Apr02 14:00 EST 996 615
WEST-19A | OC-48 | Fri 19Apr02 10:00 PST | Fri 19Apr02 11:00 PST 1142 533
WEST-19B | OC-48 | Fri 19Apr02 10:06 PST | Fri 19Apr02 11:00 PST 1319 723
WEST-20A | OC-48 | Fri 19Apr02 10:00 PST | Fri 19Apr02 11:00 PST 341 170
WEST-20B | OC-i8 | Fri 19Apr02 10:00 PST | Fri 19Apr02 11:00 PST 621 280

Table 2.3: Traces collected
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Figure 2.5: Traffic volume in Mb/s
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volume observed on each link. The peak traffic volume represents the maximum

amount of traffic seen over any five minute interval during the trace. The average

traffic volume ranges from 3 Mb/s to 1.72 Gb/s, while the peak traffic volume ranges

from 10 Mb/s to 1.73 Gb/s. For many of the links, the peak arrival rate is not

much greater than the average arrival rate. This would seem to suggest that these

links do not exhibit the same daily variations as observed in [108|, which found that

traffic volume during the day was three times greater than the traffic volume at night.

However, not all of our traces contain a full 24 hours of data, and we therefore cannot

always observe a daily trend. For the traces that do contain a full 24 hours of data,

the peak arrival rate is between 1.5 and 2 times the average arrival rate.

The monitored links have a capacity of either 155 Mb/s, 622 Mb/s, or 2.5 Gb/s.
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Figure 2.6: Link utilization

In many cases, the average traffic volume is much less than the link capacity. Figure
2.6 plots the average link utilization for each of the monitored links. Only three links.
WEST-03A and EAST-194, and WEST-19B have an average utilization greater than
50%. Only nine links have a peak utilization greater than 50%. The highest peak
utilization is 70%, and it was observed on WEST-19B.

The low link utilization is an intentional design choice which was made so that little
queuing delay occurs in the network. Later in this section we present measurements
of delay through the backbone that demonstrate that this practice is successful.

Figure 2.7 shows the peak and average traffic volume in terms of thousands of
packets/sec. This traffic metric represents the amount of load placed on network

routers and other equipment that must perform a fixed operation (e.g. a destination
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Figure 2.7: Traffic volume in packets/sec

address lookup) for each packet. In fact, it is a useful metric to evaluate the design
of the IPMON measurement entities. As described in Section 2.3.2, the OC-3 and
OC-12 measurement entities were designed to be able to record data at an average
rate of 469,000 packets/s and the OC-48 were designed to collect data at an average
rate of 1.4 Mpackets/s. The figure shows that the actual packet rate is much lower
than the maximum which can be supported by the IPMON measurement entities.
Next we investigate the composition of the observed traffic. Figure 2.8 shows the
percentage of TCP, UDP, ICMP, IPv6, and other traffic on each link. For all but five
traces, TCP accounts for over 90% of the traffic. For those five traces, UDP is the
source of the majority of the remaining traffic except for EAST2-18A for which 20%

of the traffic is ICMP traffic. The source of the UDP and ICMP traffic is described
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Figure 2.8: Traffic composition by [P protocol

in the discussion on the application mix.

Figure 2.9 shows the traffic composition by application. We consider six tvpes
of applications: web, distributed file sharing, streaming media, email, ftp, and other
traffic on each of the links. We identify the applications using the TCP and UDP port
numbers. Applications such as web, email, and ftp use official well-known TCP port
numbers. The ports used by distributed file sharing and streaming media applications,
however, are not officially assigned and depend on the implementation decisions made
by the application developers. To identify these applications, we use the port numbers
used by several popular implementations. For distributed file sharing applications this
includes Napster, Kazaa, and Morpheus while streaming media includes Microsoft

Media Player, RealAudio, and RealVideo. We also include traffic with the well-know
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Figure 2.9: Traffic composition by application
application port numbers
web http: 80, 8080

https: 443

distributed file sharing

Napster: 4329, 4444, 5555, 6666, 6688, 6697, 6699, 7777.8888

Gnutella: 6346
Scour: 8311
iMesh: 4000-5000
KaZaA: 1214

streaming media

rtp/rtsp: 554
RealAudio: 6970-7170
Microsoft Media Player/NetShow: 1755
Shoutcast: 8000, 8001, 8600, 8700, 8800, 8888
CU-SeeMe: 7648-7652, 24032
Liquid Audio: 18888, 18889

smtp: 25
email POP: 109,100
IMAP: 143,220

ftp ftp: 20,21

Table 2.4: TCP/UDP port numbers for various applications
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RTP port numbers in the streaming media category. The port number information
was obtained from the CoralReef traffic analysis program [61] and is shown in Table
2.4. Traffic which has port numbers other than those listed in the table is categorized
as other.

For all of the traces collected in August 2000, web traffic accounts for the majority
of the traffic. However, for the traces collected in September 2001 and April 2002, we
see that web is much less dominant on many links. For 13 of the 24 traces, web traffic
accounts for less than 50% of the traffic on the link. The reason for this is the large
volume of filesharing traffic on these links. This can be seen most dramatically on link
EAST2-12B, where web accounts for only 11% of the total traffic. while filesharing
traffic accounts for 68% of the traffic volume. This link is connected to an access
router which is in turn connected to a customer with a large population of DSL
home users. An interesting question is: does the file sharing traffic account for the
large amount of UDP traffic seen on several of the September 2001 traces? In these
measurements, most of the filesharing traffic uses TCP. The UDP traffic corresponds
to the other applications. We have not been able to identify the specific application
which generated this traffic.

Another point of interest is the large amount of streaming media traffic on link
EAST2-17B which is connected to an access router which is in turn connected to a
large content distribution network (CDN). Apparently, the CDN is hosting a large

volume of streaming media which accounts for 14% of the traffic on this link.



CHAPTER 2. INTERNET BACKBONE TRAFFIC MEASUREMENTS

aclive flows per minute

400000

300000

200000

100000

Ll‘l!llLLLLllllllIlllilllllllllllll:
<& 1

K |

L 2 maximum ;

8  average ;

|

. -
. 1

. ¢t

. * ;

1

— -
* !

¢ ] |

1

. L ®|

. (
L i

. % $ * E
JeSeoseteteg,, o8 $99904,4 -
Iln(lllllllllllllllll:rfl’ffflrflllr;
P e R R R L PN E R
AR A A S AN AN
b b e v O\ O O Y Qo o e o o = e
D6 50D DR B R DI = e e o = b 0 02 ) 2 - = = = 0 6 1
wwmwwmwwwwmmwgggggggggggwwwwwggggwwmm
222223333 N LLNLaLS 323 aSL3333

Figure 2.10: Active flows per minute

2.4.4 Flow Characteristics

60

In this section we analyze the characteristics of the individual user flows observed in

each trace. As described in Section 2.3.4, a flow is defined as a sequence of packets

all of which have the same source IP address, destination IP address, and IP protocol

field. For TCP and UDP traffic, the packets must also have the same source and

destination port. If there is an idle time greater than one minute between consecutive

packets, we consider the new packet to represent a new flow.

First we investigate the number of active flows. For each trace, we divide the trace

into one minute intervals and compute the number of flows which actively transmitted

data during the one minute interval. Figure 2.10 shows the average and maximum

number of active flows for each trace. In the Aug. 2000 and Sept. 2001 traces, the
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average and maximum number of flows per minute is typically between 10,000 and
50,000. There are a few exceptions. The maximum number of flows per second for
trace EAST2-12A is 254,000, while the average is only 16,000. One may expect this
to be related to the large volume of ICMP traffic observed on this link. However,
this is not the case. Traces from EAST2-12A, as well as WEST-02B, WEST-05A
and WEST-07A, WEST-16A observe a malicious user behavior known as a TCP port
scan. In a TCP port scan, a malicious user transmits either a large number of TCP
SYN packets or a large number of TCP FIN packets to different hosts in an attempt
to detect systems which have bugs that can be exploited to gain remote access. This
results in a large number of individual user flows since each packet has a different
port number or destination address, and does increase the maximum traffic rate in
terms of packets per second as seen from Figure 2.7. However, it does not significantly
increase the traffic volume in terms of bits per second. Consider the case of EAST2-
12A which has a maximum of 254,000 flows in a one minute interval. The majority
of these flows are from the TCP port scan, but each flow only transmits a single 40
byte packet. This represents an increase in traffic volume of only 1.4 Mb/s, or about
1.5% of the average traffic volume observed on this link.

The Apr. 2002 traces were collected on high bandwidth OC-48 links, and carry
a significantly larger number of flows than seen in the earlier measurements. The
average number of flows seen on these links ranges from 70.000 to 260.000. The
maximum number of flows is not significantly larger than the average since each of

these traces lasted only for one hour.
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Figure 2.11: Flow size in bytes

Figure 2.11 shows the average flow size (in terms of bytes), the maximum flow
size, and the 99** percentile of the flow size distribution. On all but four links, the
average flow size is less than 10,000 bytes. One link, EAST2-13A, has a significantly
larger average flow size (23,000 bytes) than most other traces. The large flows on
this link are generated by the distributed file sharing applications. However. other
links with large volumes of file sharing traffic (e.g. EAST-12B) have similar flow size
distribution to links which carry primarily web traffic. While the file sharing traffic
has the potential to increase the average flow size in the network, it is not strictly the
case that this occurs.

Figure 2.11 also demonstrates that there are a small number of extremely large

flows in the network. All of the links have at least one flow which transfers at least
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P(flow size > x)
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Figure 2.12: Flow size distribution

150 MB of data. 25 of the links have flows which transfer more than 1 GB of data.
These flows, however, represent a verv small fraction of the total flows observed on
each link. To demonstrate this, we plot the complementary distribution of flow sizes
from EAST2-13A (the link with the highest average flow size) in Figure 2.12. On
this link, only 1% of the flows transfer more than 108 KB of data. Only 0.04% of
the flows transfer more than 10 MB of data. Rather than repeat Figure 2.12 for all
traces, we instead show the 99 percentile of the flow size distribution for all links in
Figure 2.11. For most links, 99% of the flows transfer less than 100 KB of data.
This observation is consistent with results found in [90], {112], and [24] which
found that for many types of network traffic (LAN, WAN, web, etc.), there is a

non-negligible probability of observing extremely large flows. Distributions which
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Figure 2.13: Flow size in packets

have this property are known as heavy-tailed distributions. We perform a statistical
analysis of the flow size distributions in Chapter 3 and find that for most of the traces,
the flow size distribution is heavy-tailed.

Figure 2.13 presents a similar flow size analysis, but in terms of packets rather
than bytes. We see from this figure that the average flow size in packets is quite
small; typically between 10 - 15. Similar to the results seen in Figure 2.11. there do
exist a small number of very large flows which transmit over 1 million packets. These
flows, however, represent a small fraction of the total number of flows.

Figure 2.14 shows information about the duration of individual user connections.
For all but one trace, the average connection duration is less than 10 sec, and 99% of

the flows last less than 100 sec. The flows observed in trace EAST2-134A, the trace
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Figure 2.14: Flow duration

with the large average flow size, have an average connection duration of 14 sec. The
99t* percentile of the flow duration distribution for this trace is 196 sec, twice as large
as the 99 percentile of any other trace. In the traces collected in Aug. 2000 and
Sept. 2001, a small number of flows can last over 3 hours (10800 seconds). Flows
which last more than 2 hours are mostly streaming media applications (RTP and
RealAudio) and large web connections. These web connections could be large file
downloads or they could be streaming media applications which are required to use
http in order to pass through a firewall. However, since we do not collect any of the
user data contained in the packet, we are unable to determine what type of data is
transferred in these large web connections.

Next we investigate the traffic rate for the user connections. Figure 2.15 plots the
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Figure 2.15: Flow rates

average, 99** percentile, and maximum rates of individual user flows for each of the
traces. When plotting the flow rates, we do not consider any flows which last less
than 1 second. The average rate of an individual user flow is less than 30 kb/s for
all of the traces. This low average rate is not the result of limited bandwidth in the
network (even a slow speed modem link has a bandwidth of 56 kb/s). Instead, these
flows are limited in their transmission rate by the TCP slow start mechanisms. A
TCP session begins by the sender transmitting a SYN packet to the destination in
order to establish the connection. After the remote system responds with a SYN-
ACK, the sender will transmit a single data packet. After the sender receives an
acknowledgment (ACK) from the receiver that the first packet was received correctly,

the sender will transmit two more data packets. This procedure repeats, and the
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number of packets transmitted doubles after each set of packets is acknowledged
(assuming no loss). From Figure 2.13, an average connection contains 10 - 15 packets
(including the SYN packet). If the round-trip-time (rtt) between when a packet is
transmitted and a when a packet is received is 100 ms, it will take 500 ms to transmit
all of the data in the connection. With an average flow size of 10.000 bytes (from
Figure 2.11), the rate of such a connection will be 20 kb/s.

Figure 2.15 also shows that 99% of flows have a rate less than 300 kb/s. This
rate is much smaller than the bandwidth of the links from which the measurements
were collected. However, a small number of flows can reach rates of 30 - 50 Mb/s.
These high rate flows, however, are very brief in duration. They typically last only
between 1 - 5 seconds. Flows which last more than one minute never exceed 1 Mb/s.
On two links, WEST-14B and WEST-15B, flows with rates between 90 - 100 Mb/s
have been observed. These two links happen to be connected to a large Content
Distribution Network (CDN) customer. The very high bandwidth flows correspond
to connections directly between servers operated by the CDN customer. Similar to
the high bandwidth flows observed on other links, these connections typically last no
more than a few seconds.

Figure 2.16 plots the median round-trip-time (rtt) for flows observed in each trace.
We estimate the rtt using the procedure described in Section 2.3.4. For most traces.
the median rtt is between 80 ms and 300 ms. Four traces have median rtt’s less than
80 ms. In particular, trace EAST2-11B has a median rtt of only 12 ms, WEST-14A

has a median rtt of 31 ms, and WEST-15B has a median rtt of 58 ms. The low rtt’s
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Figure 2.16: Flow round-trip times

68

are the result of the particular customer which is connected to these links. All three

of these links are connected to a large Content Distribution Network (CDN). The goal

of the CDN is to direct web requests to a server which is not heavily loaded and which

has a short path between the user and the server. The low rtt’s are evidence that

the CDN is achieving its goal of directing requests to servers which have a relatively

short path to the end user. Figure 2.16 also shows three traces with a median rtt

of nearly 400 ms. Two of these links, EAST-08B and EAST-09B are connected to

European ISPs, and are therefore expected to have large rtt's. The remaining link,

WEST-06B is connected to a large domestic Tier-2 ISP. We do not have a satisfactory

explanation for

the large rtt’s observed on this link.

Finally, we investigate the end-to-end loss experienced by TCP flows. As described
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Figure 2.17: TCP loss rates

in Section 2.3.4, the end-to-end loss rate for a flow can be inferred by inspecting the
TCP sequence number of each packet in a flow. This number therefore includes losses
which occur outside of the Sprint network. However, since we monitor a link which is
in the middle of the end-to-end path, there are some losses we cannot detect (e.g. if
the first SYN packet is lost before it reaches the monitored link). The loss rates are
therefore a lower bound on the actual loss rates seen by the TCP flows.

Figure 2.17 plots the average end-to-end loss rate for a TCP flow, the maximum
loss rate, and the 99** percentile of the loss rate distribution for each trace. In one
trace, the average loss rate for a flow is less than 1.5%, and four of the traces have
an average loss rate between 0.5% and 1%. For the remainder, the average loss rate

is less than 0.5%. While most flows experience very little or no loss, some flows do
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have a large percentage of lost packets. In most traces, 1% of the flows have a loss

rate greater than 10%.

2.4.5 Delay Measurements

The Sprint IP backbone is designed so that packets experience very little queuing
delay in the network. As described in the Introduction, this is accomplished by
installing enough capacity in the network so that link utilization does not exceed
some threshold. While the exact value of this threshold is proprietary, we see from
Figure 2.6 that link utilization on the monitored links rarely exceeds 50%.

In this section we investigate if this design approach is successful at maintaining
low queuing delay in the Sprint backbone. Using traffic measurements collected by
the [IPMON system. we can measure the delay experienced between two monitored
links in the network using the procedure described in Section 2.3.4. We first analyze
the delay experienced through a single router in the network, and then analyze the

delay experienced between the East and West coast POPs.

Delay Through a Single Router

We begin by analyvzing the delay experienced through a single router in the Sprint
[P backbone. For the measurements collected on Aug. 9, 2000, the links WEST-05B
and WEST-01A were connected to the same router. WEST-05B was an input to the
router and WEST-01A was an output of the router. Using the traces we can measure

the delay for all packets which arrived to the router on WEST-01A and departed
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on WEST-05B. Similarly, for the measurements collected on Sept. 3, 2001 the link
EAST1-08B was the input to one router, and EAST1-09A was an output of the same
router.

Figure 2.18 plots the cumulative distribution of the packet delays observed between
the two pairs of links. For the Aug. 2000 measurements, the average packet delay
through a single router is only 153 us, and 99% of the packets have a delay less than
804 us. For the Sept. 2001 measurements, the average packet delay is only 27 us,
and 99% of the packets have a delay less than 72 us. One reason for this decrease is
that the WEST-05B link has an average utilization of 49% while the EAST1-09B link
has an average utilization of 37%. The lower utilization should result in somewhat
smaller queuing delays. However, there is a second factor which is more significant.
The Aug. 2000 measurements were collected on 155 Mb,/s OC-3 links, while the Sept.
2001 measurements were collected on newer 622 Mb/s OC-12 links. The service time
of a packet on an OC-12 links should be four times smaller than that of an OC-3
link. From the figure we see that this is indeed the case. The minimum delay from
the Aug. 2000 measurements is 28 ps while the minimum delay for the Sept. 2001
measurements is only 7 ps. This minimum delay represents the amount of time it
takes the router to perform the route lookup, switch the packet to the output interface,
and transmit the packet on the outgoing link. The minimum processing time for an
OC-12 link is, as expected, four times smaller than that of an OC-3 link.

However, in both sets of measurements, there are a small number of packets which

have very long delays (over 100 ms in the case of the Sept. 2001 measurements). To
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Figure 2.18: Delay through a single router
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investigate these long delays we plot the minimum, average, and maximum delay for
each one minute interval of the measurements. This data is shown in Figure 2.19.
For the Aug. 2000 measurements, the minimum delay over each one minute interval
is approximately 28 us. The maximum delay is typically between 1 ms and 2 ms, but
there are occasional spikes which reach up to 35 ms. A similar behavior is seen in the
Sept. 2001 measurements, with the minimum consistently at 7 us, and the maximum
typically between 100 us and 1 ms. Between 11:00 and 12:00, however the Sept. 2001
measurements also exhibit quite large spikes.

There are two possible causes for the large spikes seen in Figure 2.19. One possible
cause is that a burst of packets arrived at the queue for the monitored output link and
caused massive delays. A second possible cause is that the router was busy updating
routing tables, processing SNMP requests, or performing some other action which
prevented it from forwarding packets for a period of time. If the delays were caused
by a burst of packets, we would expect to observe this burst of packets on the output
link. However, the measurements do not indicate that such a burst is present. In
fact, during the time at which packets were waiting in the router, the output link was
idle. This indicates the long delays are caused by a period of time in which the router
is unable to forward packets. A detailed analysis of the different possible causes of
this idle time (e.g. route lookups, head-of-line blocking) can be found in [86]. In that

study we find that these idle periods affect less than 1% of the total traffic.
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Delay Between East and West Coast POPs

Next we investigate the delay between the EAST1 POP and the WEST POP. Figure
2.20 shows the distribution of packet delay from EAST1-18A to WEST-19A and
from WEST-19B to EAST1-18B. In both cases, the minimum delay is approximately
27.5 ms. This corresponds to the propagation delay and the minimum processing time
required at each router along the path between the two sites. From EAST1 to WEST,
the average delay is 1.16 ms greater than the minimum delay and the maximum delay
is only 3.82 ms greater than the minimum. These values represent the average and
maximum queuing delay that is experienced by traffic between these two sites. In
the opposite direction, from WEST to EAST1, the average queuing delay is 0.81 ms,

while the maximum queuing delay is only 1.31 ms.

2.4.6 Delay Simulations

In the previous section we observed that little queuing delay occurs in the Sprint [P
backbone. This is not unexpected as the network is designed to operate a low link
utilization in order to minimize queuing delay. To evaluate the bandwidth provision-
ing problem, however, we must know at what level of link utilization queuing delays
begin to increase. Since we are unable to observe this directly from the network due
to the low link utilizations, we investigate this question through simulation.

We developed a queuing simulator which reads a packet trace and simulates in-
jecting the traffic into an infinite buffer queue served by a constant bit rate server

of capacity C. Using the simulator, we can determine the delays experienced by
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-3

each packet in the trace if the link capacity were reduced (or conversely, if the link
utilization were increased).

There are three factors that would cause the delay in the simulator to be different
than the delay that the traffic would see in the actual network. The first source of
error is that a router does not implement an ideal FIFO queue. As we saw in Figure
2.19, some packets experience very long delays due to router pathologies. However,
these router behaviors affect a very small fraction of the packets. Furthermore, the
intent is not to model the behavior of one particular model of router, but rather to
understand the characteristics of backbone traffic and how they affect queuing delay.
The second source of error is the simulator emulates an infinite buffer queue, while
the buffers in the actual network are finite. Typical buffer sizes in the actual network
correspond to between 250 ms and 1 second of queuing delay. In the simulation
results we present, the maximum delay observed in the simulator is typically less
than 100 ms for the range of link utilizations in which we are interested. In such
cases, no loss would be experienced in the actual network. The final source of error
is that we do not consider the feedback mechanism of TCP. If we simulate a network
in which there is a large amount of loss or large delays, the TCP congestion control
mechanism would cause the sources to slow their transmission. We do not account
for this behavior in our simulator. However, as we shall see, over the range of link
utilizations in which we are interested, only a small number of packets experience
delays greater than several milliseconds and no packets experience loss. In such a

case the TCP feedback mechanism would have minimal impact.
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Figure 2.21 shows the average, maximum, and 99** percentile of the delays ob-
served in simulations performed with traces from links WEST-04B and WEST-02B.
Multiple simulations were performed for each trace, with link utilizations ranging
from 0.6 to 0.95. The behavior for link utilization less than 0.6 continues the trend
shown in the figure. The dotted line shows the point at which the maximum delay
exceeds 250 ms. For link utilizations to the right of this line, the delay simulations
may exhibit the errors described above.

The figure demonstrates that below utilization of 0.8, only 1% of the traffic expe-
riences queuing delays greater than a few milliseconds. Furthermore, the maximum
delay observed at 0.8 utilization is just slightly greater than 20 ms. However, between
utilization of 0.8 and 0.9, the delays begin to rapidly increase. Simulations performed
with traffic from the other links exhibit the same type of knee behavior, with the knee
occurring between 0.8 and 0.95 utilization. In particular, for traffic measured on the
2.5 Gb/s OC-48 links, the knee occurs above 0.90 utilization.

This knee behavior is of particular importance when deciding between bandwidth
provisioning and traffic differentiation. Traffic differentiation is only needed if links
are operated at utilizations above the knee. For the traffic measurements studied,
differentiation would allow a network provider to operate safely between 0.8 to 1.0
utilization. Without differentiation, links utilization could still reach 0.8 to 0.9
depending on the particular traffic characteristics, and still satisfy most reasonable

delay requirements.
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2.5 Summary

In this chapter, we used packet-level traffic measurements collected by the IPMON
measurement facility to study the characteristics of traffic in the Sprint IP backbone
network. From this study , we can make two observations.

First, backbone IP traffic is aggregated from a large number of users (between
10,000 and 300,000 per minute), each of whom generates data at a rate much less
than the total capacity of a backbone network link. These users are typically limited
in their data rate by the TCP slow start mechanism or by limited bandwidth in the
access networks. This type of traffic is fundamentally different than traffic observed
in prior measurement studies, as well as traffic used in many network simulation
studies. Most research studies consider network traffic which is aggregated from a
small number of users and in which a single user can dominate the characteristics of
the traffic on a single link. As we will see in the next chapter, because of the high
level of aggregation in backbone networks, many statistical properties of backbone
traffic follow a Gaussian distribution. As a result, such traffic is easier to model than
traffic typically considered in the networking literature.

Second, the Sprint [P network is designed to maintain relatively low link utiliza-
tion. On the links we monitor, link utilization rarely exceeds 50%. As a result of this
design practice, traffic experiences minimal queuing delay in the Sprint backbone.
There are, however, an extremely small number packets which experience delays over
100 ms, but these delays are the result of router behaviors such as route update pro-

cessing, rather than network congestion. Through simulation we are able to show
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that even if link utilization were increased to between 80% and 90%, very few pack-
ets would experience more than several milliseconds of queuing delay. As a result,
bandwidth provisioning is an attractive solution to meeting delay requirements in

backbone networks.
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Chapter 3

Evaluating Backbone Queuing Delay

3.1 Introduction

In Chapter 2 we demonstrated, through simulation, that link utilization on high
speed links can reach 80% to 90% before queuing delay begins to exceed several
milliseconds. While this simulation approach can be used to provision a network. it
requires collecting detailed packet-level traffic measurements and performing lengthy
simulations. Provisioning and other network design problems are greatly simplified
by using an analytic traffic model. In this chapter we develop a model which captures
the observed traffic arrival characteristics of measured backbone traffic. We call this
model two-scale Fractional Brownian Motion (two-scale FBM). Using an approach
originally proposed by Norros [83], we derive an expression for the delay distribution
of a queue fed by two-scale FBM. We also develop a procedure to compute end-to-end

queuing delays using this model.
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For presentation purposes, we use a one hour segment of traffic from link WEST-
04B to derive and explain the model. We then use a set of 331 one-hour measurements
collected in August 2000 and September 2001 to validate the model. This validation
is performed by comparing the delays computed analytically using the model with

the delays observed in simulation using the 331 traces.

3.1.1 Queuing Delay Analysis

The model only needs to capture the traffic characteristics which affect queuing delay.
We therefore begin by reviewing the procedure used to compute the queuing delay
distributions. This procedure was originally developed by Norros in [82] and applied
to LAN traffic measurements in [83|.

Consider an infinite buffer queue with a constant bit rate server of capacity C.
Let Afs,t] be the amount of traffic that arrives at the queue over the time interval

(s,t], and let A; = A[~¢,0]. The queue length at time 0 is

Q =sup(d, - Ct)
>0
The probability that the queue length exceeds some value z is then

PlQ>z]= P[sug(.-lt - Ct) > 1|
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In this form, P[Q > z] is difficult to evaluate, so we use the lower bound
Plsup(4, — Ct) > z] > sup P[4, > z + Ct] (3.1)
£20 £20

This may seem to be a rather crude approximation, but it has been shown to be
logarithmically accurate for large z [32].

This model considers a router in the network to behave as an ideal output-queued
router. Actual network routers will behave somewhat differently depending on the
particular architecture of the router (e.g. input queued, combined input-output
queued, etc.). Many of these router architectures, however, are designed to emulate
the behavior of ideal output-queued routers. In |86] we measured the delay through
routes in the Sprint network and found that it is reasonable to consider network
routers to be ideal output-queued routers.

The queuing delay experienced by a packet of size b bits is the sum of the wait-

I

ing time in the queue, %, and the service time of the packet The distribu-

Y
tion of the waiting time, W, is found directly from the queue length distribution
P(W > d) = sup;5q P(Ae > C(d +t)). The service time distribution is determined
by the packet size distribution of the arrival traffic. Rather than model the complex
packet size distributions which have been observed [43], we note that the transmission
time of 2 maximum size packet is 80 us on an OC-3 link (one of the lowest speed
backbone links). Since this is much smaller than the delay bounds required by net-

work customers we ignore the service time and consider the queuing delay to be equal

to the waiting time.
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3.2 Traffic Arrival Characteristics

From (3.1) we see that the dominant characteristic which affects queuing delay is
the marginal distribution of the traffic arrival process A at different time scales, t.
In Chapter 2, we observed that backbone network traffic is aggregated from a large
population of users, each of whom transmit data at a rate much smaller than the
total link capacity. It is natural to expect, therefore, that the distribution of 4, is
Gaussian as a result of the Central Limit Theorem. To determine if this is the case,
we compute the distribution of A, over a range of time scales ¢ and apply a statistical
test known as the Kolmogorov-Smirnov Test (K-S test) for normality [18] to test if
the distribution is Gaussian.

The marginal distribution of the traffic arrival process at time scale ¢ is computed
by dividing a trace into non-overlapping blocks of duration ¢ and computing the
number of bits which arrive over each of these blocks (e.g. compute the number of
bits which arrive over every 100 ms time interval). For purposes of presentation,
we normalize A, to get the average traffic arrival rate at each time scale ¢ (i.e. we
consider A/t ).

We first consider a one hour segment from 9:56 am to 10:56 am of trace WEST-
04B. Figure 3.1 plots the marginal distribution WEST-04B at time scales of 1 ms, 10
ms. and 100 ms. At t=1 ms, the distribution appears Gaussian with mean 74.7 Mb/s
and variance 852 (Mb/s)%. At t=10 ms it appears Gaussian with mean 74.7 Mb/s
and variance 178 (M/b/s)®. At t=100 ms it appears Gaussian with mean 74.7 Mb/s

and variance 49.5 (Mb/s)?. Applying the K-S test to each of these distributions
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confirms that they are consistent with a Gaussian distribution. When the test is
applied to the distributions for larger time scales up to 60 seconds, it confirms that
these distributions are also Gaussian.

Since a Gaussian distribution is fully specified by its mean and variance, to com-
pute the delay probability (3.1) it is sufficient to know the mean and variance of A, at
each time scale ¢. The mean remains the same for all time scales as seen from Figure
3.1. The variance, however, changes from one time scale to the next. The relationship
between the variance and time scale can be studied using a technique known as the
variance-time (VT) plot. This is simply a plot of the variance versus the time scale ¢.

Before proceeding, it is important to note that prior studies have demonstrated
that the VT plot may not provide much information about the structure of network
traffic at time scales less than 100 ms. For example, [38| showed that for traffic mea-
surements collected on an FDDI ring and various T3 links in the AT&T network, the
behavior of the traffic arrival process over small time intervals could not be described
only using second-order statistics (mean and variance). However, the measurements
considered in [38] were of traffic with an average arrival rate between 1 Mb/s an 10
Mb/s, much lower levels of aggregation than the trace WEST-04B. From Figure 3.1
we can see that for large traffic aggregates, the distribution at small time scales is
Gaussian and can therefore be fully described using only the mean and variance. The
VT plot, therefore, provides enough information (in conjunction with the average
traffic arrival rate) to completely characterize the traffic arrival process. Later in this

section we will present an analysis of how much aggregation is needed before it is
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possible to use second-order traffic models to describe the traffic arrival process. We

will also address the statistical bias that may be introduced by using the VT plot to

estimate the variance at small time scales.

The VT plot for the one hour segment of WEST-04B is shown in Figure 3.2. The

figure shows that the variance exhibits a two-piece linear relationship with the time

scale ¢t. It decays quite rapidly over time scales between 1 ms and 75 ms, and starts

to decay more slowly after that point. The slow decay of the variance at large time

scales is indicative of a statistical property known as long-range dependence (LRD)

which has been observed in LAN traffic [67] as well as WAN traffic [90], [38]. For

traffic with LRD, the variance of the traffic arrival rate decays as a power of the time
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scale t

A
var(—t‘-) ~tH2 st — 00

where H is known as the Hurst parameter and takes a range of 0.5 < H < 1. This
behavior is quite different from Poisson traffic or other short-range dependent (SRD)
traffic. SRD traffic has a Hurst parameter equal to 0.3, and the variance of A,/t
therefore decays exponentially with the timescale t. As a result SRD traffic “smooths
out” as it is averaged over larger and larger time intervals, while LRD traffic remains
quite “bursty”.

To illustrate the difference between LRD and SRD traffic, we compare the one
hour of traffic from WEST-04B with one hour of Poisson traffic with the same average
traffic arrival rate as the WEST-04B traffict. This comparison follows the same
approach used in [67]. Figure 3.3 plots the traffic arrival rates at different time scales
for the WEST-04B traffic and for the Poisson traffic. The top row of the figure plots
the average traffic arrival rate over each one second interval during the one hour
period. The second row plots the average traffic arrival rate over 100 ms intervals for
the period between 150 seconds and 800 seconds indicated in black the top row of the
figure. The bottom row plots the average traffic arrival rate over 10 ms intervals for
the black region shown in the second row.

At the 10 ms timescale, the magnitude of fluctuations in WEST-04B are of the
same magnitude as those for the Poisson traffic. However, when the Poisson traffic

is averaged over larger and larger time scales, the variability of the traffic is greatly

!Poisson traffic is admittedly a very simplistic form of SRD traffic. More sophisticated SRD
models, however, would show the same basic behavior as Poisson.
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Figure 3.3: Comparison of WEST-04B traffic and Poisson traffic

reduced. The WEST-04B traffic, on the other hand, remains quite bursty even when
averaged over one second intervals.

The LRD of network traffic has been shown to be the result of the distribution of
individual user connection sizes [112]. [23] and [65] have shown that if the duration in
time (or size in bytes) of individual user connections has a heavy-tailed distribution,
the aggregate traffic will exhibit LRD. A heavy-tailed distribution is one in which
P(X>1)~z*1<a<?2 asz — o In fact, the Hurst parameter is directly

related to the a parameter of the connection size distribution according to H =

(3 —a)/2 [112].
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To validate that the user connection size distribution is responsible for the large
time scale behavior of var(A,/t) observed in our measurements, we compute both H
and o for the one hour segment of traffic from WEST-04B. One approach to estimating
H is to compute the slope of the VT plot at large time scales [107]. However, this
approach suffers from a statistical bias. For LRD traffic it is possible for the traffic
arrival rate to exceed the mean arrival rate for a long period of time (i.e. to have a
sustained burst of traffic over a long time interval). [t is difficult to determine if the
increase in traffic volume is the result of a shift in the mean arrival rate, or if it is
simply a long burst of traffic. To address this problem, Abry and Veitch developed a
wavelet based approach to estimating H which can reliably estimate H in the presence
of level-shifts in the traffic {110]. We use this estimator, rather than the VT plot to
estimate H. Using this estimator, at time scales greater than 100 ms, we find that
H = 0.862 for WEST-04B. For reference, we plot the variance of a process with H
= 0.862 as a dashed line in Figure 3.2. This closely matches the observed variance of
the WEST-04B traffic.

We now compare this H value with the & parameter of the connection size dis-
tribution. We identify individual user flows in the WEST-04B measurement using
the approach described in Section 2.3.4. There is one minor difference between the
flow definition used in Chapter 2, and the flow definition used to generate Figure
3.4. In Chapter 2, the end of a flow was identified as the last packet after which
no further packets between the same source and destination were observed for a 60

second interval. In Figure 3.4, we consider the end of a flow to be the last packet
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after which there is an idle period of only 5 seconds. This definition is much closer to
the idle period of 2 seconds used in [112]. Furthermore, if the idle period is increased
to more than 5 seconds, the o parameter does not match the H parameter for this
measurement.

Figure 3.4 plots the complementary distribution of the duration times of user con-
nections. With H = 0.862, we expect this distribution to be heavy-tailed with a =
1.28. The dotted line in Figure 3.4 shows a heavy-tailed distribution with parameter
a = 1.28. This closely matches the tail of the measured connection duration distri-
bution. To further validate this relationship, we use the Hill estimator as described
in [112] and the procedure described in [25] to estimate the actual o parameter for

the connection size distribution. We find the actual connection size distribution is
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heavy-tailed with @ = 1.30 which indicates H should be 0.85. This value of H is
within the confidence intervals of the wavelet-based estimator.

Next we investigate the behavior of the variance at time scales less than 75 ms.
We see from Figure 3.2 that the variance at small time scales also has a linear rela-
tionship with ¢, but the slope is much larger and the variance is much higher than
can be explained by the connection size distribution. The reason for this is that the
theory relating the connection size distribution to H considers user connections to be
constant bit rate (CBR). In a real network, however, user connections are far from
CBR. In Chapter 2 we observed that over 90% of the traffic in the network is trans-
mitted using TCP. TCP connections transmit a burst of packets corresponding to the
TCP window size. wait one round-trip-time (rtt) for the acknowledgment, and then
transmit another burst of packets. At time scales greater than the rtt, the connections
can be approximated as CBR streams with a rate of one window per rtt. While there
can be a variation of the window size over time, it has been empirically demonstrated
that the CBR approximation is reasonable [112]. However, as the time scale falls
below the rtt, individual TCP connections become much more variable than CBR
streams resulting in the higher variance.

A direct relationship between the rtt and the break point between the two scaling
regions of the VT plot has been demonstrated though the use of simulation {37|. This
study performed a simulation where all connections had a rtt of 24 ms and a second
simulation where all connections had a rtt of 610 ms. They found that the linear

relationship between the variance and timescale which was observed at large time
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scales (i.e. the relationship due to the connection size distribution) broke down at a
time scale just above the rtt of the user connections. In general, for each of the 331
one-hour measurements we study, we find that the transition point occurs “near” the
median rtt of the connections observed in the traces. Figure 3.5 plots the cumulative
distribution of the time scale at which the transition point occurs for all 331 traces.
This distribution closely matches the distribution of median rtt's which were shown
in Figure 2.16. For the WEST-04B trace in particular, the median rtt is 96.9 ms
which is approximately the point at which the variance begins to rapidly increase.
However, we do not find a statistically significant correlation between the median
or mean rtt and the breakpoint location. In general the rtt distribution is quite com-

plex, and the mean or median value is insufficient to fully describe the distribution.
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As a result, we are unable to fully explain the exact location of the breakpoint and
the cause of the linear behavior in the variance at small time scales. However, we are
able to develop a model to capture this behavior and compute the resulting queuing
delays.

Before developing the model, it is interesting to compare the small time scale be-
havior observed in our measurements with the measurements used in prior studies.
As mentioned earlier, prior measurements exhibited quite complex distributions at
small time scales and could therefore not be described using only second order prop-
erties. To illustrate this, we consider one of the measurements used in these prior
studies. This measurement is known as DEC-WRL-2 and was collected on a 100
Mb/s Ethernet segment connected to the primary connection between DEC’s West-
ern Research Lab and the Internet [90|. Figure 3.6 plots the marginal distribution of
A/t at 10 ms intervals and 100 ms intervals for DEC-WRL-2? . Comparing these
distributions to the distributions for WEST-04B shown in Figure 3.1, we see that.
indeed, the distribution of the traffic arrivals at small time scales for DEC-WRL-2 is
much more complex than the Gaussian distributions seen for WEST-04B. In partic-
ular, the distribution at the 10 ms time scale has noticeable spikes at 50 kb/s, 550
kb/s, 1150 kb/s, and so on. The reason for these spikes is that the average traffic
arrival rate for the DEC-WRL-2 trace is only 250 Kb/s. Assuming an average packet
size of 300 bytes, this corresponds to an average rate of approximately one packet

every 10 ms. The complex distribution is the result of observing some intervals with

2We are unable to investigate the distribution at 1 ms timescales since the measurement data for
DEC-WRL-2 does not have enough timescale granularity.



CHAPTER 3. EVALUATING BACKBONE QUEUING DELAY

18000

16000

14000

12000

g 8

frequency

6000

4000

2000

0 2 4 6 8 10
average traffic arrival rate (10 ms timescale)

(a) t = 10ms

120

100t

80

60r

frequency

40f

20

o0 2 4 6 8 10

average traffic arrival rate (100 ms timescale)

(b) t = 100 ms

Figure 3.6: Marginal distribution at ¢ = 10ms for DEC-WRL-2

97



CHAPTER 3. EVALUATING BACKBONE QUEUING DELAY 98

a single packet, some intervals with two packets, and so on.

These complex distributions at small time scales have been observed in many other
traffic studies [67], [92], [38], [34], [97]- For traffic with such complex distributions,
it is inappropriate to use only second-order statistics to describe the distribution.
However, these studies consider traffic whose average arrival rate ranges from several
hundred kb/s to at most 10 Mb/s. This represents traffic from a relatively small num-
ber of users (e.g., 10,000 user connections over a one hour period for the measurement
used in [112]). While at the time these measurements were collected, they represented
a large traffic volumes, traffic in today’s network is orders of magnitude larger. In
our traces, the average arrival rate ranges from 1 Mb/s to over 1.5 Gb/s. For trace
WEST-04B in particular, the average traffic rate is almost 75 Mb,s, and there are
nearly 5 million unique user connections over the one hour period. While the DEC-
WRL-2 traffic would transmit an average of one packet per 10 ms time interval, the
WEST-04B traffic has an average of 235 packets in each 10 ms interval. As a result
of the increased aggregation the marginal distributions are approximately Gaussian
at small time scales and can be completely described by second order statistics.

A natural question to ask is: how much aggregation is needed before the marginal
distribution at small time scales become Gaussian? We can investigate this by con-
sidering the complete set of 331 one hour traffic measurements. For some of the
measurements (especially for those collected between 1:00 am and 4:00 am), the av-
erage traffic arrival rate is quite low. In some cases it is as low as 1 Mb/s. For other

measurements collected during afternoon hours on highly utilized links, the traffic
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Figure 3.7: Minimum time scale at which marginal distributions are Gaussian

volume can reach almost 300 Mb/s. Using the K-S test, we can determine which
of these traces have Gaussian marginal distributions at small time scales, and which
have the more complex distributions.

More precisely, we compute the marginal distribution of the traffic arrival process
at time scales from 1 ms to 1 sec for each of the traces. At each time scale we apply
the K-S test to determine if the distribution is Gaussian. For each trace we find the
smallest time scale at which the marginal distribution is Gaussian.

Figure 3.7 plots the minimum Gaussian time scale against the mean arrival rate of
the traffic for each of the traces. We see that for all but four traces with traffic volume
greater than 50 Mb/s, the minimum time scale is between 1 ms and 8 ms. These traces

have characteristics very similar to those shown for WEST-04B. Below 50 Mb/s there
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is much more variation. Two-thirds of the traces with traffic volume between 5 Mb/s
and 50 Mb/s have a minimum Gaussian time scale between 1 ms and 64 ms, while one-
third exhibit distributions similar to those shown for the DEC-WRL-2 measurement.
For traces with traffic volume less than 5 Mb/s, the marginal distributions are never
Gaussian. All of these low volume traffic measurements resemble the DEC-WRL-2
traffic. Therefore, if traffic volume on a link is less than 5 Mb/s, and for some traffic
between 5 Mb/s and 50 Mb/s, it is inappropriate to use only second order statistics
to describe the traffic arrival process at small time scales. During the busy hour of
the day, however, traffic volume on nearly all backbone links is greater than 50 Mb/s
and Gaussian models are therefore appropriate to use.

There are situations where 50 Mb/s traffic will not have enough aggregation to
use Gaussian models. Consider, for example, a link carrving three 20 Mb/s HDTV
video streams. The bandwidth guidelines we present are only valid for the traffic
with the same mix of user connections that we see in today’s backbone. In particular,
the traffic must be aggregated from a large population of users, and the rate of an

individual user should be much less than the rate of the total traffic aggregate.

3.3 Modeling Network Traffic

Modeling network traffic which is aggregated from a small number of users has proven
to be quite difficult. In the previous section, we saw that the low volume traffic
measurements used in prior studies have very complex distributions for the traffic

arrival process at time scales less than 100 ms. Two basic approaches have been
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taken to model these complex distributions. One approach is to simply assume that
the distributions are Gaussian. For the prior traffic measurements, at time scales
greater than 100 ms, the traffic arrival process is approximately Gaussian. and the
variance of the Gaussian distribution exhibits a linear relationship with the time
scale as shown by the dashed line in Figure 3.2. One could therefore assume that the
distributions at small time scales are also Gaussian and that the linear relationship
also holds. Such a model is known as Fractional Brownian Motion (FBM), and it was
originally proposed as a model for network traffic by Norros [83].

However, in earlier measurements, the distribution of A,/t at small time scales
is clearly not Gaussian as seen from Figure 3.6. Furthermore, studies have shown
that the small time scale distributions can be the dominant factor of queuing delay
[100],[53],[47]. Therefore, many researchers have developed models which accurately
represent the complex distributions of the traffic arrivals at small time scales. The
most common approach is to use a construction known as a multifractal cascade.
Such models have been proposed in [38|,[98],[97],[34]. However, because these models
are trving to represent a very complex distribution, they require a large number of
parameters. As a result, the models are difficult to use analytically, and they re-
quire collection of detailed packet-level measurements in order to estimate the model
parameters. With the packet-level measurements, one could just perform the simula-
tions described in Chapter 2 to evaluate the queuing delay.

As seen in the previous section, backbone network traffic which is aggregated

from a large population of users does not exhibit the same complex traffic arrival



CHAPTER 3. EVALUATING BACKBONE QUEUING DELAY 102

distributions at time scales between 1 ms and 100 ms®. As a result, we can use much

more straightforward traffic models to represent aggregate traffic.

3.3.1 Two-Scale Fractional Brownian Motion

To model backbone traffic we would like a process which has Gaussian marginals with
a variance that obeys the two-piece linear relationship observed in the traces. This can
be accomplished using an extension of traditional Fractional Brownian Motion known
as Multiscale FBM. (Mg) — FBM, is an extension of FBM with a Hurst parameter
that varies at different time scales. We can therefore use one Hurst parameter, Hy,
for large time scales and another Hurst parameter, H,, for small time scales. (My) —
FBAM was originally used by Benassi and Deguy [5] for image synthesis and Bardet
and Bertrand [4] to model biomechanic data.

[t is important to note that there are several different processes which have Gaus-
sian marginals and a variance that obeys a two-piece linear relationship with the time
scale. For example, one could consider traditional FBM with a periodic component.
The purpose of this study, however, is to evaluate queuing delay. We are therefore
interested in finding a model which has the same marginal distributions as that ob-
served in the network traffic. Multiscale-FBM is one such model. All other models
with the same behavior of the marginal distributions will give identical results when

evaluating the queuing delay.

31t should be noted that at time scales of several hundred us, aggregate traffic has complex
distributions similar to those shown at the 10 ms time scale for DEC-WRL-2. However, since we
are interested in queuing delays on the order of several milliseconds we do not need to consider the
behavior of the traffic at microsecond time scales.
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To construct Multiscale FBM, we start with the harmonizable representation of

the traditional FBM process, By (t) [101]

W (dw)

By(t) = /_m CH) [T

W(dz) is a Brownian measure and W(dw) is its Fourier transform, and C(H) =
?IT'@TIL;WW' For such a process H is constant for all frequencies (inverse of time
scale). (Mg) — FBM is a generalization of this process in which H is varies across

different frequencies. We define an (Myg) — FBM, X, (t), as a process such that

.\’t:/ W (dw) , —00 < t < oo
(0= [ )

where

e K € N, represents the number of Hurst parameters

o fori=0,1...., K there exist (w; , a; , H; )€(R,, R., (0.5.1)) such that p(w) =

tHi+1/2 .
gﬂﬁl\'}'—i_'— forw, Kw <wjy with0=wy <w; <+ <wg <Wg4 =0
o n(~w) = n(w)

[4] has shown that .X,(t) is a Gaussian process with stationary increments and variance

at time scale 4, var(d) = E[X,(t + 8) — X,,(¢)]?, given by

K . Jw.- — 3
var(d) =4 ** ai / +1 1 —cosu

i=0 C(H;)? Jswi p2H+1 du. (3.2)
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To derive the queue length distribution for this process, we follow the same pro-
cedure Norros used to derive the queue length distribution for FBM [83]. Let A, be

the cumulative traffic arrival process

Ap(t) = mt + Vm X, (t),

where m is the mean arrival rate of the traffic, and the term \/m.X(t) describes the

fluctuations around the mean.

We use the lower bound (3.1) to compute the queue length distribution

P[Q > z] > sup P[A,(t) > = + Ct] (3.3)
>0
Since at time scale ¢, A,(t) has a Gaussian distribution with mean mt and variance
m - var(t) the queue length distribution is

P[0 > 1] =sup$(r+Ct_mt

-— 3.
20 \/m - var(t) ) (34

Where @ is the residual distribution function of the standard Gaussian distribu-

tion. In the general case for M, — FBM with many Hurst parameters, finding the ¢
which maximizes the right hand side of (3.4) is difficult. However, as we have seen
from our measurements, our traffic has only two distinct scaling regions. We therefore

consider the specific the case when A" = 1 and call this two-scale FBM. In this case
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we can use the following approximation

62t 81 "0$6<w_11

var(d) = ClH)* (3.5)
v2H, 1 Y
0 OC—(af-?o)—'-’ t <0< 00

where (a,, H,) represent the linear region at small time scales, (ag, H;) represent the

linear region at large time scales, and fl is the transition point between the two

regions.

Using this form for the variance, we find that (3.4) is maximized at

Hy r
fo =) THTm 1T < ILe
Ho _z >
I-HoC-m *~ = “¢

and the queue length distribution is

exp(—«(a;, H)))z* 2 r <z,
PIQ > z] ~ (s (3.6)
exp(-—fc(ao, Ho))$2_2”° y L 2 I

where
(C - m)2H
am(l — H)?-2H(H)2H

k(a.H) = 5

(C — m)(l _ H[) Holog(%)i'(ﬂo—l)los(%)-f.{;log(%)

Ho-H,
H,

C=
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3.3.2 Model Validation

To validate the two-scale FBM model we compare the actual delay experienced by
the measured traffic with the delay computed using the model. To determine the
actual delay for the traffic we use a queuing simulator as described in Chapter 2.4.6.

To compute the delay using two-scale FBM, we must estimate the model param-
eters from our traces. We use the Abry-Veitch estimator [110] to determine the Hy
and H, parameters and we use linear regression on the variance-time plot to estimate
ao and a,. However, we do not know, a priori, over which time scales to estimate
(ao, Hp) and over which time scales to estimate (a,, H,). As we have seen in the pre-
vious section, the breakpoint between the two regions of the model typically occurs
at time scales between 100 ms and 500 ms. We therefore do not consider this region
and estimate (a;, H;) from the traffic characteristics at time scales of 2 ms - 64 ms.
and we estimate (ag, Hy) from the traffic characteristics at time scales of 512 ms - 2
min.

We first investigate how well the model estimates the delay for one hour of the
WEST-04B trace. The parameters for this trace are H, = 0.62, Hy = 0.89, a, = 69.6
kb-s, ay = 338 kb-s, and m = 75 Mb/s. We compare the delay distribution obtained
using the model and the delay distribution obtained from the simulation for a range
of output link utilizations, p. The results are shown in Figure 3.8. The vertical dotted
line shows the point at which the maximum delay in the simulation exceeds 250 ms.
Bevond this point it is possible to experience loss in the actual network the simulation

does not capture the effects introduced by the TCP congestion control mechanism.
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For a reference, we also show the delays that are predicted using the standard FBM
model.

Figure 3.8 plots the 70th, 90th, 99th and 99.9th percentile of the delay distribution
at different output link utilizations. Similar results continue at percentiles up to
99.99%. Percentiles below 70% do not perform as well. The reason for this is the
approximation used in (3.1) is only valid for the tail of the delay distribution. We find
it works well at percentiles above 70%. Fortunately, this is the area of interest when
designing a network to meet the requirements of latency sensitive traffic. Applications
such as voice or video can only tolerate a small percentage of their packets which
exceed the delay requirement.

From the figure we see that the traditional FBM and the 2-scale FBM models
perform the same when the output utilization is high. In this region, the large time
scale characteristics dominate the queuing performance (i.e., t* is greater than several
hundred milliseconds). Both FBM and the 2-scale FBM are accurate models for the
large time scale characteristics, so they perform the same. At low utilization, the
2-scale FBM model performs much better than traditional FBM. In this region ¢* is
less than several hundred milliseconds. Since 2-scale FBM is a much better model for
the small time scale characteristics, the delay estimate is much more accurate.

Next we evaluate the model performance for the rest of the traces. It is not possible
to repeat Figure 3.8 for all traces. Instead we evaluate the model performance at a link
utilization p = 0.7 and at p = 0.9. The performance at p = 0.7 determines how well

the model fits before the knee of the curve shown in Figure 3.8, and the performance
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Figure 3.9: Two-scale FBM performance for 300 sample traces, ¢ = 0.001

at p = 0.9 is indicative of how well the model fits after the knee. p = 0.9 may not be
a reasonable operating point for a commercial network as the delays are quite large,
but we would like to evaluate the model performance in this region. We only show
results for ¢ = 0.001 as this value showed the worst performance for WES-04B and
most of the other traces.

Figure 3.9 plots the difference in the delay estimated by the 2-scale FBM model
and the delay obtained in simulation: error = ""L“"‘Z":—"_‘:ﬁi’f"ﬂ"-’—'. From the Figure
we see that at p = 0.7, 80% of the flows have an error less than 0.75. and 96% of the
flows have an error of less than 1. An error of 1 may seem to be quite large (100%

error). However, in terms of actual delay, it represents a difference between 1 ms and

2 ms or 4 ms and 8 ms. For a reference, at ¢ = 0.001 and p = 0.7, the WEST-04B
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trace shown in Figure 3.8 has dsimutator = 2.2 ms and do_scaterpar = 1.6 ms. This
corresponds to an error of 0.37, close to the median error for all traces.

At p = 0.9 the model does not appear to perform as well. Only 75% of the flows
have an error of less than 1. However, consider Figure 3.8(d). Due to the rapid
increase in delay, shifting one of the curves to the left or right can result in a very
large difference between the two delay values. In fact, for WEST-04B, the error at p
= 0.9 and € = 0.001 is almost 10, one of the highest errors of all traces considered. We
can consider the results shown in Figure 3.8(d) to be among the worst of all traces we
have studied. Furthermore, from a bandwidth provisioning point of view, the location
of the knee of the curve shown in Figure 3.8 is the most important aspect rather than
the actual magnitude of the delay above the knee. The model does accurately predict

this knee location.

3.3.3 Queue Fed by Multiple Two-scale FBM Flows

To derive the queue length distribution of a queue fed by multiple 2-scale FBM flows.
we follow the same procedure as in Section 3.3.1. Consider a queue fed by :V two-scale
FBM flows. Let A} be a 2-scale FBM process corresponding to flow n. The queue

length distribution is
P[Q > ] =sup P()_ A} >z + Ct)
>0 4

Assuming the flows are independent, at each time scale, t, the distribution of 3~ A}

is Gaussian with mean }°, m,t and variance ¥, m, - var,(t). The queue length
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distribution is then

P[Q > 1] =sup$(I+Ct— Yo Mot

3.7
20 \/2,, my - var,(t) (3.1

Unlike the single flow case, we cannot use the variance approximation (3.5) because
the variance of the aggregated flow has more than two scaling regions. As a result,
(3.7) cannot be further simplified. While analytically cumbersome, (3.7) can be easily
computed using Matlab or C programs.

To validate (3.7), we perform simulations of a queue fed by two flows. We consider
the first flow to correspond to the one hour segment of WEST-04B and the second flow
to correspond to a one hour segment of WEST-05B. Both of these traces were collected
on input links to the same router over the same time interval. Our measurement
systems are synchronized to within 5 us using GPS, so it is reasonable to consider
both of these measurements as representing the input to the same queue. The delay
obtained through simulation and the delay computed analytically are shown in Figure
3.10. The results for a queue fed by two two-scale FBM flows are very similar to that
for a queue fed by a single two-scale FBM flow shown in Figure 3.8. Repeating this

experiment with more than two flows produced similar results.

3.4 End-to-end Delay

In the previous section we developed a method to compute the delay distribution for a

single queue. Now we address the question of how to compute the end-to-end queuing
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Figure 3.11: Network topology used for simulation

delay through a network. Consider the sample network shown in Figure 3.11. For
this network, we would like to compute the end-to-end delay between any ingress and
egress point. To do this, we use the following procedure. First, we model the traffic
flow between each ingress and egress point using a two-scale FBM process. Then, for
each link in the network we determine which ingress/egress flows arrive at the link
and compute the delay experienced in that queue. The end-to-end delay over a path
in the network is found by convolving the delay distributions for every queue along
the end-to-end path.

In order to use this procedure we must make two assumptions. First, we assume
that the characteristics of a flow remain the same throughout the network. Second,
we assume that the delays at each queue are independent and the end-to-end delay
can therefore be obtained by convolution. In this section we validate that these two
assumptions are reasonable, and we compare the end-to-end delays obtained through

this analytic method with the end-to-end delays seen in simulation.
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3.4.1 Network Decoupling

The end-to-end delay computation is greatly simplified if the same parameters for a
flow can be used at each hop the flow traverses. While it is not possible to do this in all
networks, in many practical situations it is reasonable to consider the characteristics
of a flow are unchanged throughout the network. The most well known example of
this behavior is Kleinrock’s independence approzimation [64]. Under many reasonable
network scenarios, if a queue is fed by multiple Poisson input streams, the output of
the queue is also Poisson. Similar results have been derived for traffic such as FBM
which exhibits a so-called Large Deviations Principle [113|. These arguments have
also been used to justify that the effective bandwidth of a flow remains unchanged
throughout the network [30|. The basic idea behind these arguments is that in many
network scenarios, queues have sufficient output capacity so that very little queuing
occurs for most packets. Only a small fraction of the traffic will experience large
queuing delays. As a result, the flows passing through the queue will not be affected
by the queuing. Such network conditions will be found in the network scenarios in
which we are interested. We are interested in networks which are designed to meet a
delay requirement which specifies only a small fraction of the packets experience long
queuing delays.

To verify that this is a reasonable assumption for the network scenarios we consider
we perform simulations using the network shown in Figure 3.11. We use a set of one
hour measurements from six traces: WEST-16A, EAST2-13A, EAST1-08B, EAST2-

11B, EAST1-09A, and EAST1-10B. All of these measurements were collected over the
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Node | Destination Addresses
S1 0.0.0.0-127.255.255.255
S2 | 128.0.0.0-191.255.255.255
S3 | 192.0.0.0-199.255.255

-

5.255
S4 | 200.0.0.0-207.255.255.255
S5 | 208.0.0.0-215.255.255.255
S6 | 216.0.0.0-223.255.255.255

note: addresses 224.0.0.0 - 255.255.255.255 are the multicast and reserved address
range. We do not observe any packets with these destination addresses.

Table 3.1: Mapping between destination IP address and network egress link

same one-hour interval. We use these traces as the inputs to the network, S1 - S6,
respectively. To generate traffic demand between each ingress and egress point, we
subdivide each trace into six separate flows according to the destination IP address of
the packets in the trace. The mapping between IP address and egress node is shown
in Table 3.1. The two-scale FBM parameters for each of the ingress,/egress flows is
given in Table 3.12.

We find that all but three of the sub-traces have sufficient aggregation to be
modeled using 2-scale FBM. However, these three traces have an average rate of 0.81,
1.51, and 1.94 Mb/s. Since these flows are so small, we find there is little difference
between the end-to-end delay computed when we model these flows as 2-scale FBM
and when we completely ignore these flows in the computation. We therefore do
not consider them in the computation. We do, however, include these flows in the
simulation results.

To test if the flow parameters are unchanged in the network, we simulate the

network and compute the model parameters for each flow when it enters the network
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S1 S2 S3 S4 S5 S6

m = 136 m = 37.2 m = 14.7 m = 16.0 m = 7.95 m = 6.90

H, =0577 | H =0594 | H, =0.626 | H, =0.562 | H, = 0.599 | H, = 0.582

S1| a, =78.8 a; =110 a =132 a; = 59.6 a =733 a; = 90.8
Hy =0.851 | Ho = 0.884 | Hp = 0.803 | Hy = 0.895 | Hg = 0.885 | Hy = 0.936

Qg =269 Qg = 370 Qg = 433 Qg = 266 Qy = 280 Qg = 423

m = 82.6 m = 1.51 m = 3.51 m = 6.78 m = 6.21 m = 1.94

H, =0701 | H =0.728 | H, =0.632 | H, =0.566 | H; = 0.568 | H, = 0.706

S2 | a; =107 a, = 608 a; = 189 a; = 12.2 a, = 36.6 a; =123
Hy = 0.880 | Hp = 0.567 | Ho = 0.868 | Hy = 0.905 | Hy = 0.705 | Ho = 0.883

ag = 141 ag = 659 ag = 389 ao =27.11 | ap =958 ag = 249

m = 38.8 m = 25.6 m = 12.8 m = 18.8 m = 20.0 m = 15.7

H, =0.588 | Hy =0.584 | H, =0.593 | H; =0.635 | H, =0.390 | H, = 0.57

S3 | a; =685 a, = 48.8 a; = 33.0 a; = 106 a; =403 a; =314
Hg =0.858 | Hy = 0897 | Hy = 0.948 | Hy = 0.971 | Hy = 0.871 | Hy = 0.818

ag = 254 ag = 151 ag = 149 ag = 373 ag = 78.7 ag = 36.3

m = 499 m = 42.5 m = 16.9 m = 28.6 m = 18.5 m = 143
Hy, =0500 | H, =0500}| H, =0.564 | H; =0.520 | H, =0.519 | H, = 0.556

S4| a; =653 a =T7l.1 a; = 117 a; = 43.7 a; = 30.1 a, = 101
Hy =0999 | Hy = 0978 | Hy =0.953 | Hyp = 0.864 | Hp = 0.894 | Hy = 0.969

ag = 477 ap = 305 ag = 530 ap = 217 ap = 116 ag = 497

m = 4.72 m = 35.29 m = 7.30 m = 0.871 m =143 m = 47.2
H, =0620 | H, = 0614 | H; =0.621 | H, =0.506 | H; = 0.533 | H; = 0.5349

S5 | a =273 a; =29.8 a; = 54.3 ay = 4.74 a; = 31.6 a; = 33.9
Hy =0992 | Hy =0.926 | Hy = 0944 | Hy = 0.879 | Hy = 0.896 | Ho = 0.913

ag = 67.0 ag = 103 ap = 121 ap = 24.4 ag = 95.9 ag = 92.8

m = 56.9 m = 29.7 m = 143 m =223 m = 37.7 m = 18.1
H, =0503 | H, =0535 | H, =0.516 | H, =0.521 | H; =0.330 | H; = 0.507

S6 | a; =184 a; =249 a; =190 a; =21.2 a =27.5 a; =27.1
Hq =0.852 | Ho = 0833 | Hy =0.824 | Hy = 0.835 | Ho =0.776 | Hy = 0.921

ap = 96.2 ao = 116 ag = 80.0 ap = 113 ag = 130 ag = 183

units: m (Mb/s), a;,ap (kb's )

Table 3.2: Traffic demand matrix for simulation

116
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at the ingress node and when it departs the network at the egress node. For each
flow, we compute the percent difference between the parameters at the ingress and
the parameters at the egress. Figure 3.12 plots the cumulative distribution for all
flows. We performed a simulation where all links had a utilization of p=0.7 and a
second simulation with p =0.95*. Since the mean arrival rate of the flows are fixed,
to change the link utilization we change the link capacity.

For p = 0.7, the difference between the aq and Hy parameters at the ingress and
egress node is quite small. This is to be expected since they represent the large time
scale characteristics of the traffic. The reshaping that happens in a queue should
happen over small time intervals. The difference for the a; and H, parameters is
more significant. For H, there is a maximum error of 21%. Remember, since H; can
only take values between 0.5 and 1, this could represent a significant change. The
difference between @, at the ingress and egress can be as high as 63%. For p = 0.95
the difference is slightly larger.

While the parameter error may seem high, it is not immediately obvious if this
error affects the queuing delay. When many flows are mixed in a queue, if the pa-
rameters of only a small number of flows are incorrect it may not affect the total
queuing delay. To evaluate the impact of the parameter error on the queuing delay
we perform the following test. For each queue in the network, we compute the queue

length distribution using the parameters estimated for each flow at the input to the

1We increase the utilization from p = 0.9 used in the previous section to p = 0.95. In the previous
section, the average traffic arrival rate on a link was 75 Mb/s, while in this simulation it is frequently
above 150 Mb/s. For several links, utilization needs to reach 95% before the knee of the delay curve
is reached.
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Figure 3.12: Difference between the FBM parameters at the ingress and egress nodes
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network. We also compute the queue length distribution using the actual parameters
for each flow found in the simulation. We compare the 99.9th percentile of these delay
distributions and find that the mean error is about 15%. There is one queue with
an error of 200%, but for this queue, the magnitude of the delay is small. The delay
computed using the input parameters is 1.2 ms, while the delay using the actual pa-
rameters is 0.4 ms. The queue with the next highest error has an error of 33%. These
errors are significantly lower than the errors inherent in using the model (compare
to the error in Figure 3.9). For the networks we consider, it is therefore reasonable
to consider that a flow remains unchanged between ingress and egress and that the

same model parameters may be used at each queue through which it passes.

3.4.2 End-to-end Delay Results

We now apply the procedure described at the beginning of this section to compute
the end-to-end delay through the network shown in Figure 3.11. We compare the
delays computed using the model with simulation results. As in the previous section
we perform two simulations. one with p = 0.7 for all links and one with p = 0.95. We
compute the percentage difference between the 99.9th percentile of delay distribution
computed using the model and the 99.9th percentile of the delay distribution obtained
in the simulation. We compute this difference for the delay between each ingress and
egress node and plot the cumulative distribution in Figure 3.13. From this Figure.
we see that between 80% of the ingress/egress node pairs the difference in the delay

computed using the model and the delay in the simulation is less than 1. This holds
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for both p = 0.95 and p = 0.7. These results are very similar to the error in the single
hop delay shown in Figure 3.9. The most noticeable difference is that the error at
p = 0.95 in the end-to-end delay case is quite a bit higher than the error for p = 0.9
in the single queue case. Recall at high utilization, the difference between the model
and the simulation are diverging. As a result, the error at p = 0.95 will be higher
than at p = 0.9. We conclude that the model provides accurate estimates for both

the single hop delay as well as the end-to-end delay.

3.5 Summary

Using measurements of traffic collected on the Sprint IP network, we have found that
when backbone traffic volume reaches 5 Mb/s to 50 Mb,s the marginal distribution of
the traffic arrival process at time scales between 1 ms and 100 ms becomes Gaussian.
This behavior is quite different from the results found in prior measurement studies
which found very complex distributions at small time scales for traffic at lower levels
of aggregation (1 Mb/s to 10 Mb/s). As a result of the Gaussian nature of backbone
traffic, we are able to develop a parsimonious traffic model known as two-scale Frac-
tional Brownian (FBM) motion. We derive the delay distribution for a queue fed
by this model and develop a procedure to compute the end-to-end delay through a

network carrving two-scale FBM traffic.
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Chapter 4

Bandwidth Provisioning

4.1 Introduction

In Chapter 3 we developed an analytic model for backbone traffic known as two-scale
FBM. In this chapter we demonstrate how this model is used to solve the bandwidth
provisioning problem.

Consider a backbone network which is to be designed so that a constraint on
the total end-to-end delay between any ingress and egress point is satisfied. This
delay constraint is probabilistic and is specified as P[d")) > D,.q] < €. that is the
probability that the delay between node i and j exceeds D, is less than €. For the
purposes of this discussion we consider that the propagation delay in the network is
zero, and that d*/) and D, represent the total queuing delay experienced. In actual
networks, the propagation delay will of course be non-zero, but since this delay is

a constant for all packets, it can simply be added to D,., For example, when we
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consider an end-to-end D, of 10 ms, this would correspond to a total end-to-end
delay of 40 ms in a network with 30 ms of propagation delay. Alternatively, D,.q
can also be considered the maximum amount of delay jitter that is incurred in the
network. In the example above the minimum delay a packet experiences would be 30
ms, while the maximum delay would be 40 ms.

There are several approaches which can be used to provision a network to meet
such end-to-end delay requirements. One approach is to set a constraint on the total
delay which can be incurred in a single queue in the network and determine the
amount of bandwidth required on each link so that this delay constraint is met. For
example, if D,., is 10 ms and the maximum number of hops between any ingress and
egress point is 10, then each queue would be allowed to have 1 ms of queuing delay.
Using the two-scale FBM model we can determine how much bandwidth is needed
on a link so that the probability of a packet exceeding 1 ms delay on that link is less
than e. This approach is discussed in Section 1.2.

While the previous approach is a relatively straightforward method of bandwidth
provisioning, it can be difficult to determine the appropriate delay constraint for a
single queue. In the above example, we considered that the total end-to-end delay
budget was divided evenly among all the hops along the end-to-end path. However.
some hops may be over links with relatively low bandwidth (e.g. 155 Mb/s OC-3
links), while other hops may be over higher speed links (e.g. 10 Gb/s OC-192 links).
Since the delays on the high bandwidth links will be lower, it may be inefficient to

divide the total end-to-end delay budget evenly across all hops. Furthermore, when
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considering probabilistic delay requirements, the end-to-end delay is unlikely to be
the sum of the delays at each hop. If only € packets exceed the delay requirement
at one hop, it is unlikely that the same € packets exceed the delay requirement at
the second hop. One could develop a strategy to set the delay requirements for each
queue that takes into account all of these factors. However, an alternative solution is
to develop an approach that computes the end-to-end delay along each path in the
network and finds the amount of bandwidth required on each link so that the total
end-to-end delay constraints are satisfied. This is a network optimization problem
known as a Capacity Assignment (CA) problem and we present its solution in Section
4.3.

The two approaches described above are used to determine how much capacity is
needed on each link in a network. However, installing new capacity can take between
six months and two years. In some cases (e.g. when a new customer is added to the
network), new traffic demands may be added to the network which result in the end-
to-end delay constraints being violated. Since it is not possible to install bandwidth
fast enough to meet these demands, the only alternative is to change the routing in
the network to redistribute the traffic in a manner such that the end-to-end delay
constraints are satisfied. In Section 4.4 we develop an algorithm to find a set of
routes for the flows in a network such that a constraint on the total end-to-end delay
is satisfied, if such a set of routes exists. For some traffic demands, it not possible to

accommodate the additional traffic and still meet the end-to-end delay constraints.
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4.2 Bandwidth Provisioning for a Single Link

A common question is: what is the maximum utilization at which a link can be
operated while still meeting a particular delay requirement? The maximum achievable
utilization on a link carrying two-scale FBM traffic can be computed directly using
the delay distribution derived in Chapter 3. For a link of capacity C carrying traffic
with an average arrival rate m, we can compute the delay distribution using Equation
(3.6). To find the maximum achievable utilization, we need to find the maximum m
which can be supported and still satisfy the delay constraint. To accomplish this we
use binary search to find the maximum m.

The only remaining question is what are the four model parameters, (Hy, ag, H,,a,;)
for traffic with an arrival rate of m. Using the measurements, we can make some pro-
Jjections. Figure 4.1 plots the model parameters for each traces against the traces’
mean arrival rate, m. We see that the a, parameter (the variance at small time
scales) exhibits a moderate increase with m. Using linear regression we find that
a; = 97m + 52562 where m is the mean arrival rate in Mb/s. The parameter aq, on
the other hand, does not show as clear a trend. The best fit using linear regression
finds the relationship ag = 1027m + 149400, but there is a wide range for the actual
values of the parameters. The H, and H, parameters seem to be relatively stable
across all values of m. For very small m (less than 20 Mb/s) we do see a wide range
of values for Hy, but they converge to a value of 0.90 as m increases. This is to be
expected since Hj is a function of the connection size distribution. The connection

size distribution should not change as m increases, as long as we are multiplexing
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similar streams. H, converges to 0.39 in a similar fashion.

Since there is not a clear trend in the aq parameter, we consider two cases. First
we consider the case of “average traffic”. This corresponds to the linear regression
lines shown in Figure 4.1. We also consider a “most variable” traffic approximation.
This represents the traffic with the highest variability seen in all of our measurements
and corresponds to the conservative estimate lines shown in Figure 4.1. For these
two cases, we compute the maximum link utilization for a range of link capacities
and plot the results in Figure 4.2. We show results for two different maximum delay
requirements, D,.,, = 10ms and D,., = Ims and three different delay percentiles,
e = 0.01, e = 0.001, and ¢ = 0.0001. We consider D,., = 10ms as it is comparable
to the 20 ms propagation delay for backbone networks. With D,., = 10ms, the sum
of the queuing and propagation delay would be 30 ms. D,., = 1ms may seem quite
small relative to the propagation delay. However, we consider it to account for low
jitter services. With D,., = lms, a provider could offer a service with an end-to-end
delay of 20 ms and 1 ms of jitter.

Figure 4.2(a) shows the results assuming the traffic has characteristics similar to
the average traffic while 4.2(b) shows the results for the most variable traffic. For
links greater than 1 Gb/s, the typical bandwidth found in most backbone networks,
link utilization can reach 80% to 90% for all but the most stringent SLAs. For such
links, traffic differentiation will provide little bandwidth savings and relatively simple
provisioning guidelines can be used (e.g. maintain utilization less than 80% on all

links in the network). Between 10 Mb/s and 1 Gb/s the achievable link utilization
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can vary quite a bit. For these links, simple guidelines are insufficient. It is important
to know the exact model parameters for the traffic in the network and perform the

queuing delay computations.

4.3 Capacity Assignment Problem

The results in the previous section can be used to provision a network if the delay
requirement for a single queue can be derived from the end-to-end delay requirements
which must be satisfied for the network. However, as we described at the beginning of
this chapter, there are difficulties associated with determining the delay requirements
for a single queue in the network. In this section we present an integrated procedure
to determine the amount of bandwidth required on each link in the network so that
an end-to-end delay constraint is satisfied.

Consider a network with fixed topology, fixed routing, and a known traffic demand
between each ingress and egress point. For this network, the end-to-end delay between
any ingress node and egress point must satisfy a probabilistic bound of the form
P[d%) > D,.] < e. For this network, we are interested in finding the amount
of bandwidth required on each link so that the end-to-end delay requirements are
satisfied. A problem of this sort is referred to as a Capacity Assignment (CA) problem.

The CA problem has been solved for networks where the traffic flow between
an ingress and egress node is modeled as a Poisson process with exponential service
times and where the objective is to minimize the average delay [64]. Using Klein-

rock’s independence approximation and Jackson's theorem one can show that each
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ingress/egress flow remains Poisson throughout the network, and one can therefore
derive expressions for the average queuing delay. Given an expression for the average
delay, techniques such as Lagrangian relaxation are used to find the minimum cost
network, where cost is the sum of the bandwidth on each link in the network. More
complex cost functions which consider that a link has a fixed cost and a variable cost
proportional to the bandwidth can also be used.

Our problem is different in three respects. First, many solutions to the CA problem
assume a link can have any possible capacity (e.g. 100 Mb/s, 103 Mb/s, 106.34 Mb/s).
In an actual network, only a discrete set of link capacities are available for each link
(e.g. 153 Mb/s, 622 Mb/s, or 2.5 Gb/s). Restricting the link capacities to a discrete
set transforms the problem into a complex integer programming problem in which
must be solved using iterative heuristics. Second, we are interested in meeting a
probabilistic delay requirement between each ingress and egress point rather than
minimizing the average delay for a packet. Third, as demonstrated in Chapter 3.

backbone traffic is quite different from Poisson traffic.

4.3.1 Problem Formulation

Let .V be the set of nodes in the network, and L be the set of bidirectional links
connecting the nodes. The capacity of each link ¢;,/ € L, can be chosen from a finite
set of possible link capacities C. The traffic which arrives to the network at node :
and departs the network at node j is denoted by z;; and is modeled by a two-scale

FBM process with parameters (mt), H o{) g i) The flow x;; follows
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path p;; through the network. For this network, we would like to find the capacity

assignment for all network links which satisfies the following properties:

Minimize the total network cost M =3 . ¢
Subject to P[d*) > D, <€, Vie N,,j€ N,i#j

For this problem, we consider the total cost of the network to be the sum of the
individual link capacities, but the algorithm may be easily extended to handle more

complex cost functions.

4.3.2 Capacity Assignment Algorithms

In most situations, it is possible to find the capacity allocation which results in the
minimum network cost using a fairly simple algorithm. Consider a single link along
an end-to-end delay path. The queuing delay at this link must be less than the total
end-to-end delay allowed along the entire path. For a particular link, we can compute
the minimum amount of bandwidth needed to satisfy this requirement. This process
is repeated for every link, and the end-to-end delay along every path is computed.
If the end-to-end delay constraints are satisfied, then we have found the capacity
assignment which has the minimum network cost.

We find that in most situations, this procedure finds the minimum cost network.
The reason for this is that the end-to-end delays distributions are computed by con-
volving the delay distributions at each hop (rather than summing the delay at each
link as would be done to compute the average end-to-end delay). If the delay require-

ments are satisfied for each queue independently, then it is likely the convolution will
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not exceed the total end-to-end delay requirement.

However, this procedure is not guaranteed to work for all possible networks. When
this procedure does not work iterative heuristics must be used to search for the
minimum capacity assignment. Typically, the heuristic solutions operate as follows
[7]- Each iteration of the heuristic begins with a current capacity assignment. A trial
capacity assignment is generated by changing the capacity of one or more links in
the current capacity assignment. If the trial capacity assignment satisfies the end-
to-end delay constraints and the cost of the trial capacity assignment is lower, the
trial capacity assignment replaces the current capacity assignment. The algorithm
terminates when no further improvement is possible. Such an algorithm was proposed
by Maruyama and Tang [72] to find a capacity assignment which minimizes cost and
average packet delay. This algorithm is quite complex, but the basic approach is
to generate new trial topologies by reducing the capacity of links which will result
in the smallest increase in delay and increasing the capacity of those links which
result in the greatest decrease in delay. The solution found by the Maruvama and
Tang algorithm, as well as all other algorithms which only accept trial assignments
with lower cost, may be improved by repeating the algorithm with a different initial
solution. An alternative possibility is to allow the algorithm to accept some trial
capacity assignments which have a higher cost than that of the current assignment.
One such approach, known as simulated annealing has been proposed by Levi and

Ersoy [69]. Learning automata [85] and genetic algorithm approaches [36] have also

been used.
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Algorithm 1 Simulated Annealing algorithm for Capacity Assignment Problem

initialization

k=0, P,=0.90
choose initial feasible capacity assignment C,
N = max(20, 2 * number of links)

fori=1to NV

create a neighbor of C, called C; such that:
C; is a feasible network
Cost(C;) > Cost(Cy)

Dmean = v Z,\;l Cost(C,) — Cost(C,)

- — _Dmsan
be = to = ifHy

annealing

do

n=0
do
create neighbor of C, called C,
if C, is feasible
if Cost(C,) < Cost(C,) then C, =C,

Cost{Cq)—CortiCn}
else if e % > random[0, 1] then C, = C,
n=n+1
until V. neighbors are accepted or until n = 2 * number of links
k=k ~ 1

by = * by

until Cost(C,) is the same for N, consecutive values of k
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We chose to implement the simulated annealing heuristic as it has been shown to
perform well when applied to the Capacity Assignment problem [69],[36]. Simulated
annealing was originally developed by Kirkpatrick, Gelatt, and Vecchi [63], and has
been applied to a wide range of optimization problems. The details of the algorithm
are given in Algorithm 1.

The primary difference between Simulated Annealing and algorithms such as the
Maruyama/Tang algorithm is that at each iteration of the algorithm, a trial capacity
assignment with a higher cost than the current capacity assignment may be accepted
with acceptance probability P. As the algorithm progresses, the acceptance probabil-
ity is slowly decreased according to the cooling schedule. By accepting trial capacities
with a higher cost, the algorithm avoids local minimum and converges to the optimal
solution. In fact, with an optimal cooling schedule the algorithm is guaranteed to
find the global minimum [1].

However, with an ideal cooling schedule, the algorithm would take an infinite
amount of running time. In practice, cooling schedule parameters which achieve an
acceptable tradeoff between the running time of the algorithm and the cost of the
final solution must be found through experimentation. The four parameters of the

cooling schedule are:
e P, the initial acceptance probability

e .V,, the length of each epoch - this is specified as the number of neighbors which

must be accepted before transitioning to the new epoch

e «, the rate at which the acceptance probability is decreased between epochs
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Figure 4.3: Sprint network topology

e .V,, the number of consecutive epochs which terminate with the same cost of

the capacity assignment

Through experimentation we found using P, = 0.9, V. = 5, @ = 0.8, and .V, = 5

resulted in the best performance.

4.3.3 Capacity Assignment for the Sprint IP Backbone

Using the algorithms described in the previous section, we can evaluate how much
bandwidth is required in the Sprint IP backbone in order to meet various end-to-end
delay constraints. By comparing the total cost of such a network to the total cost of
a network which is designed just to support the average data rate of the traffic in the

network without any delay requirements, we can determine if bandwidth provisioning
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type 1 | 155 Mb/s
type 2 | 310 Mb/s
type 3 | 622 Mb/s
type 4 | 1.24 Gb/s
type 5 | 2.48 Gb/s
type 6 | 4.98 Gb/s
type 7 | 9.95 Gb/s
type 8 | 19.9 Gb/s

Table 4.1: Link types

is a feasible approach.

The topology of the Sprint network is shown in Figure 4.3. The topology and
routing for the network are known, but we do not have measurements of the actual
traffic demand matrix. To generate the traffic demand matrix, we use the approach
outlined in [8]. We randomly classify 20% of the nodes in the network as “big”
nodes, 40% as “medium” nodes, and 40% as “small” nodes. The mean traffic vol-
ume between an ingress ¢ and egress j is selected from a Gaussian distribution with
mean™) = (size; + size;)/2 where sizey, = 2.48 Gb/s, sizemedium = 622 Mb/s, and
sizesmau = 155 Mb/s. The remaining four model parameters (a(lij ), H {ij),af,ij), H((,ij))
are determined based on the mean arrival rate as described in Section 4.2. We consider
both the average case and most variable traffic.

We generate five random node classifications and the resulting traffic matrices
and find the capacity assignment which minimizes the network cost for a range of
delay requirements. The set of possible link capacities is shown in Table 1.1. To
find the capacity assignment we first use the simple algorithm. If the end-to-end

delay constraints are not satisfied using the simple algorithm, we apply the Simulated
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Annealing algorithm.

The feasibility of the bandwidth provisioning approach can be studied by com-
paring the bandwidth required to meet the end-to-end delay constraints with the
minimum bandwidth required just to support the average rate of the traffic. We de-
fine the ezcess bandwidth as the percentage difference between the average rate of the
traffic and the link capacity that is found in the solution to the capacity assignment

. _ ci—average traf fic volume; . .
problem: bw, = ¥ ;¢; average traf fic volame; The excess bandwidth is computed for

each of the five traffic matrices, and the average is plotted for a range of delay re-
quirements in Figure 4.4. We first consider a delay requirement in which only 1% of
the packets exceed 10 ms queuing delay end-to-end through the network. If the net-
work traffic corresponds to the “average traffic” from Section 4.2, the network needs
only 3.2% excess bandwidth above the minimum bandwidth required to support the
average traffic volume. If the network traffic is similar to the “most variable” traffic
observed in all the measurements, only 4.6% excess bandwidth is required. Reducing
the number of packets which can exceed the delay requirement to 0.01% results in
only modest increases in the required bandwidth. These results are consistent with
the results from Section 4.2 where we found that for links greater than 1 GB/s (which
is the case for most of the links in the network we are considering), link utilization
could reach 80% - 90% for delay requirements with D,., = 10 ms.

A delay requirement in which only 1% of the packets exceed 10 ms queuing delay
end-to-end would be sufficient for even strict applications such as voice. Increasing

the total end-to-end delay from 150 ms to 160 ms, for example, would not significantly
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degrade the performance of a voice call [70]. For such delay requirements, bandwidth
provisioning seems to be an attractive solution. However, we are interested in under-
standing how low network queuing delays can be reduced before the bandwidth re-
quirements begin to increase. Figure 4.4 therefore plots the excess bandwidth needed
to support delay requirements ranging from 1 ms to 10 ms. For “average” network
traffic, supporting delay requirements as low as 1 ms only requires up to 17% excess
bandwidth. However, for the “most variable” network traffic, supporting end-to-end
queuing delays of less than 3 ms requires significant amounts of excess bandwidth. In
the extreme case of a delay requirement in which only 0.01% of the traffic exceeds 1
ms queuing delay end-to-end, the network would need almost 60% more bandwidth
than the average traffic volume.

It is also interesting to compare these bandwidth requirements with the bandwidth
that is installed based on current provisioning practices used by network providers to-
day. Typically, network providers will establish a maximum link utilization threshold
for each link and design the network so that the utilization is always below this thresh-
old. These thresholds, however are set primarily based on intuition and experience.
Consider the case where a network provider sets a maximum link utilization thresh-
old of 50% for all links in the network (this corresponds to 100% more bandwidth
than the average traffic volume). For the average traffic case and a delay requirement
of D;eq = 5 ms, € = 0.001, the provisioning approach described in this thesis only
requires 8% more bandwidth than the average traffic volume, a 92% savings over the

threshold approach.
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4.4 Flow Assignment Problem

The previous two sections described methods for determining the amount of band-
width needed to support a particular delay requirement. While these approaches
are useful for long-term planning, there are situations in which traffic volume in the
network may increase, and new capacity cannot be installed fast enough to meet the
increase in demand. To accommodate these increases in demand, network operators
reroute traffic in order to reduce the traffic volume on overloaded links. While it is
not always possible to reroute traffic (alternative paths with sufficient capacity may
not exist), in many cases moderate increases in traffic demand can be accommodated
by finding alternate routes. In this section we develop an algorithm to find a set of
routes for a given traffic demand so that an end-to-end delay constraint is satisfied.
Finding a set of routes to meet an end-to-end delay constraint can be formalized
as a network optimization problem known as the Flow Assignment problem. This
problem is very similar to the Capacity Assignment problem considered in the previ-
ous section. The difference between the two is that the Capacity Assignment problem
considers the routes, p;;, to be fixed and finds the capacity, C, for each link. The
Flow Assignment problem considers the link capacities to be fixed and finds the route
for each flow! . Furthermore, the objective of the Capacity Assignment problem is
to minimize the total network cost, which is a function of the link capacities. In the
Flow Assignment problem, the network capacities are known, so it is not appropriate

to minimize the network cost. In fact, if one is simply trving to find a set of routes

!There is also a Capacity and Flow Assignment problem which simultaneously finds both the
link capacities and the routes for each flow which minimize total network cost.
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which will satisfy the end-to-end delay constraints an optimization step is not needed.
However, there are several network parameters which it is desirable to optimize. One
possible parameter is the average utilization of all links in the network. Such an
approach, however, may result in some links which are very heavily loaded and some
links which are very lightly loaded. To prevent such a situation, one can minimize the
maximum utilization across all links. This will allow every link in the network to have
some excess capacity which can be used to carry additional traffic. By optimizing the
maximum link utilization, it is possible to have some network paths which are very
long. For example, the maximum utilization may be reduced by allowing some flows
to be routed from the East coast, to the West coast, and back to the East coast. To
prevent such a situation from occurring, one can place constraints on the length of

any path.

4.4.1 Problem Formulation

Let N be the set of nodes in the network, and L be the set of bidirectional links
connecting the nodes. The capacity of each link, ¢, is known. The traffic which arrives
to the network at node ¢ and departs the network at node j is denoted by z;; and is
modeled by a two-scale FBM process with parameters (m(), H&) (") g g9y,
For this network, we would like to find the path for each flow, p;;, which satisfies the

following properties:

Minimize the weighted sum of the maximum link utilization and average path

length: M = B maxe, utilization; + (1 — 8) ¥, jen lengthy,, / | V]2
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Subject to P[d®) > D, <€, Vie N,,j € N,i#j

In this problem definition, all of the traffic between node i and node j must follow
the same path p;;. However, it has been demonstrated that allowing the traffic to
be split among a small number of alternate paths is beneficial [104]. In the example
below, we therefore split each flow z;; into four separate subflows I{Fj,k =(1,2,3,4)

and allow each subflow to follow a different path pr

4.4.2 Flow Assignment Algorithm

The Flow Assignment algorithm is substantially more complex than the Capacity As-
signment problem considered in the previous section. As a result, it is not possible to
use a simple algorithm such as the single link algorithm developed for the CA prob-
lem. Instead, the only method for solving the Flow Assignment problem is through
the use of heuristics. A simulated annealing algorithm similar to the one developed
for the capacity assignment problem can be developed. This algorithm changes the
path pfj of a single flow at each iteration and searches for the path assignment which
minimizes the maximum utilization and average path length.

However, the simulated annealing heuristic is much more complex than the simu-
lated annealing algorithm for the capacity assignment problem. The algorithm for the
capacity assignment problem changes a single link capacity at each iteration. This
requires computing a new delay distribution for the link whose capacity was changed.
The algorithm for the flow assignment problem changes a single path at each iteration.

This requires computing new delay distributions for all of the links from which the
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Algorithm 2 Algorithm to solve flow assignment problem

Set maximum utilization for each link, p,.. based on delay requirement and results from Section
4.2

Simulated Annealing

initialization
k=0, Py=0.90
choose initial flow assignment F,
K = max(20, 2 * |N|)
fori=1t0K
create a neighbor of F, called F; such that:

Pt < phoaz for all links [ with flow assignment F;
M; > M

Drmean = X0 Mi - M,

— 4 — Dmegn
te =t = Tn(1/Po)

annealing
do
n=20
do
create neighbor of F; called F,,
if ot < pl,q for all links [ with flow assignment F),
if M, < M, then F, = F,
elseif e = > random|[0, 1] then F, = F,
n=n+l

until N, neighbors are accepted or until n = 2 * |N|?
k=k +1
te =axtp_;

until M, is the same for N, consecutive values of k&

compute end-to-end delay for all paths in the network

if end-to-end delay constraint is not satisfied. pmgr = 0.95pma, and repeat Simulated Annealing
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path was removed as well as new distributions for all the links to which the path was
added. Furthermore, the flow assignment algorithm requires many more iterations
than the capacity assignment algorithm. There are 4N? flows in the network, and
therefore 4V2 paths which must be selected from a large number of possible paths. If
the capacity assignment algorithm were run on a full mesh network, there would be
N? links whose capacity must be selected. However, backbone networks are not full
mesh, and in the case of the Sprint network there are approximately 4.V links, and
each of these links had only eight possible capacities from which to choose.

As a result, implementing a simulated annealing algorithm which computes the
exact end-to-end delay for every flow at each iteration of the algorithm is not feasible.
[nstead, for the simulated annealing portion of the algorithm, we only check that the
average link utilization on each link is within the guidelines found in Section 4.2
for the particular delay requirement in which we are interested. Once the simulated
annealing algorithm has terminated and found an assignment for each path, we check
the exact end-to-end delays in order to determine if the requirements are satisfied. If
not, we repeat the simulated annealing algorithm with slightly lower link utilization

thresholds. The details of the algorithm are given in Algorithm 2.

4.4.3 Flow Assignment for Sprint IP Backbone

We are interested in determining how much extra traffic can be supported if the flow
assignment algorithm is used to find routes for traffic rather than using shortest-path

first routing, which is the approach used in most operational networks. To evaluate
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total network load (Mb/s) | percent increase
Initial traffic load 43143 -
Maximum load with shortest-path routing 13653 1%
Maximum load with flow assignment 53510 24%

Table 4.2: Total network load with and without dynamic routing

this, we begin with the set of flows z;; and the link capacities ¢; that were the solution
of the capacity assignment problem presented in the previous section. This represents
the capacity installed to meet a traffic demand of z;; assuming each of the r;;’s follows
the shortest path between i and j. Due to the discrete nature of the link capacities,
it is possible to modestly increase the total load in the network and still meet the
end-to-end delay objectives even if all the flows still follow the shortest path. To
determine how much the load may be increased, we multiply the mean rate of each
flow by a factor & > 1 and determine if the end-to-end delay constraint is satisfied
with the increased traffic volume. We continue to increase « until the point at which
the end-to-end delay constraint is violated. Next we consider that each flow r;; can be
divided into four subflows. The total amount of traffic in a flow is randomly divided
among these subflows. We apply the flow assignment algorithm and determine how
much further a may be increased before exceeding the end-to-end delay requirement.

Table 4.1 shows the results of this procedure. The total network load is simply
the sum of the average rates of all flows z;;. We present results corresponding to the
case in which the “most variable” traffic considered in the capacity assignment section
must meet an end-to-end delay requirement with D,., = 10 ms and € = 0.01. The

table shows the average results for all five traffic matrices that were considered. From
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the table, we see that with shortest path routing, the total network load can only be
increased by 1% and still satisfy the end-to-end delay constraints. However, using
the flow assignment algorithm, we are able to increase the total network load by 24%.

Beyond 24%, the delays in the network exceed the end-to-end delay constraint.

4.5 Summary

In this chapter we have developed procedures to evaluate the bandwidth required on
each link in a network to support an end-to-end delay constraint. We find that for
links with capacity greater than 1 Gb/s, utilization can reach 80%-90% and still meet
all but the most stringent delay requirements. Similarly, for the network as a whole,
only 5% - 15% excess bandwidth is needed to satisfv most end-to-end delays. In these
situations, bandwidth provisioning is an attractive approach. However, to meet some
very stringent delay requirements, link utilization on Gb/s links must be less than
60%. In these situations traffic differentiation will result in large bandwidth savings.
Most of these bandwidth savings, however, can be realized without differentiation by
simply allowing a few milliseconds of extra delay in the network.

Traffic differentiation does, however, provide benefits other than simply bandwidth
savings. In particular, traffic differentiation may allow the network to meet the SLAs
in the presence of unpredictable events (e.g., a sudden increase in traffic volume due
to a flash crowd or link failure). While in some cases the flash crowd may be streaming
the latest movie trailer or some other real-time data and traffic differentiation would

not provide a benefit, there are many other types of unpredictable events for which
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differentiation does provide a benefit. To address such situations, we developed a flow
assignment algorithm which can reroute traffic to take advantage of excess capacity
available in the network. This algorithm allows the network load to be increased by

nearly 25% before the end-to-end delay constraints are violated.



Chapter 5

Conclusion and Future Research

Interactive applications such as voice, audio, and video, as well as business appli-
cations such as Virtual Private Networks are becoming an increasingly important
component of Internet traffic. Such applications have strict requirements on the to-
tal end-to-end delay which may be incurred in the network. There are two basic
mechanism which may be used to meet the needs of these applications. One ap-
proach, known as traffic differentiation. is to give preferential treatment to latency
sensitive traffic. While this approach can lead to efficient network design, there are
costs associated with traffic differentiation. Traffic differentiation requires additional
complexity in network routers, as well as added sophistication in network installation,
management, and troubleshooting procedures. A second approach, known as band-
width provisioning, is to provide enough resources (i.e. bandwidth) so that all traffic
meets the most stringent delay requirement. This thesis investigated the bandwidth

provisioning approach in the context of backbone networks to determine how much

149
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resources were required to meet various delay guarantees.

The amount of resources required is dependent on the characteristics of backbone
network traffic. We therefore began by collecting and analyzing traffic measurements
from the Sprint [P backbone, a commercial Tier-1 I[P network. Chapter 2 described
the architecture of the [PMON measurement facility which was designed to collect
detailed packet-level traces from multiple locations in the Sprint network. These
traces are used not only for the research described in this thesis, but also by a wide
variety of research projects undertaken by the Sprint Advanced Technology Labs.

Chapter 2 also characterized backbone network traffic in terms of the protocols and
applications which generate the traffic, and analyzed the characteristics of individual
user flows in the network. Backbone network traffic is dominated by TCP traffic.
On nearly all the links we monitor, over 90% of the traffic is TCP traffic. For early
measurements which were collected in the summer of 2000, most of the traffic was
generated by web applications. On a typical link 70% to 80% of the traffic would
be web traffic. However, measurements collected in 2001 and 2002 demonstrate the
peer-to-peer filesharing applications are becoming equally as important as web traffic.
In fact, on some links, less than 20% of the traffic was web traffic and over 60% was
filesharing traffic.

The most significant observation in terms of the bandwidth provisioning problem
is that backbone network traffic is composed of a very large number of low rate users.
In a one minute interval, a backbone link can carry between 10,000 and 300,000

individual user flows, depending on the link bandwidth. The average rate of a single



CHAPTER 5. CONCLUSION AND FUTURE RESEARCH 151

user is typically less than 50 kb/s, and only 1% of the users exceed a rate of 500 kb/s.
This is significantly smaller than the 155 Mb/s to 2.5 Gb/s capacity that is available
on backbone links.

As a result of this large amount of aggregation, many statistical properties of
backbone traffic follow Gaussian distribution. The property which is of interest when
evaluating the queuing delay in the network is the traffic arrival process. Prior mea-
surement studies have observed that the arrival process of network traffic, especially
at small time scales, has quite complex distributions which cannot be fully char-
acterized simply by the mean and variance. However, these results were based on
measurements of traffic with an arrival rate between 200 kb/s and 10 Mb/s. Chapter
3 demonstrates that once the traffic volume has reached 50 Mb/s (and even for some
cases for traffic volumes between 5 Mb/s and 50 Mb/s), there is sufficient aggregation
that the traffic arrival process becomes Gaussian and can be fully characterized by its
mean and variance alone. Chapter 3 develops a model known as two-scale Fractional
Broumian Motion (FBM), whose arrival process matches that of backbone network
traffic, and derives an expression for the delay distribution of a queue fed by two-scale
FBM. In this chapter, it is also demonstrated that under realistic network scenarios,
assumptions commonly made for Poisson traffic also hold for two-scale FBM and that
it is therefore possible to evaluate the end-to-end delay through a network.

Analyzing a set of over 300 one-hour traffic measurements, Chapter 1 finds a set of

two-scale FBM model parameters for “average” backbone traffic as well as the “most
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variable” backbone traffic. With these two models, the bandwidth provisioning ap-
proach can be evaluated for backbone networks. The bandwidth provisioning problem
is addressed in three different ways. First, one could divide the total allowable end-to-
end delay among the different links in the network. For example, if the total allowable
end-to-end delay was 10 ms, and there were 10 links along the longest path in the
network, each link could be allowed 1 ms of queuing delay. Chapter 4 determines the
maximum utilization at which links of different capacity (e.g. 622 Mb,/s OC-12 links,
2.5 Gb/s OC-48 links, etc.) can be operated while meeting such delay requirements.
For links greater than 1 Gb/s, utilization can reach 80% - 90% and still meet all but
the most stringent delay requirements.

However, dividing the end-to-end delay among different queues is not always a
straightforward process. Therefore, a second approach to addressing the bandwidth
provisioning is to consider the entire network, and determine the amount of bandwidth
required on each link so that the total end-to-end delay constraints are satisfied.
Chapter 4 develops two approaches to solving this problem. One approach is to find
the bandwidth on each link so that the total end-to-end delay is not exceeded on
that single link. In most situations, the resulting network will meet the total end-
to-end delay requirements. However, in some cases this approach does not work,
and an iterative search heuristic known as Simulated Annealing is used. When these
procedures are applied to the Sprint network, we find that designing the network to
support end-to-end queuing delays on the order of 5 ms to 10 ms requires only 5%

- 15% excess bandwidth above the minimum bandwidth needed just to support the
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average traffic volume.

Installing new network capacity can take between six to 48 months. In some cases,
traffic volume will increase and there is insufficient time to install new capacity. To
accommodate such increases in traffic demand, traffic in the network can be rerouted
in order to take advantage of excess capacity which is available on alternate paths.
Chapter 4 develops an algorithm to find a set of routes for flows in a network so
that the end-to-end delay constraints are not violated. Using this algorithm allows
the network load to increase 24% beyond the load which can be supported using
shortest-path first routing.

In summary, in the context of backbone networks, bandwidth provisioning is an
attractive solution. As a result of the large amount of statistical multiplexing, as well
as low packet transmission times, delays on backbone links remain less than several
milliseconds until link utilization reaches 80% - 90%. As a result, across the entire
network only 3% - 15% excess bandwidth is needed to support delay requirements

which would be satisfactory to even stringent applications such as voice.

5.1 Future Work

This thesis developed an analytic model for backbone network traffic and applied this
model to determine the amount of bandwidth needed to support various end-to-end
delay requirements. There are several areas of interesting future research both in
terms of the traffic model and in terms of supporting end-to-end delay guarantees.

In terms of the traffic model, there are two basic questions which are not addressed
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in this thesis. The first question is what causes the linear scaling behavior of the
variance which is observed at small time scales. At large time scales, the linear scaling
has been demonstrated to be the result of the distribution of user connection sizes
[112]. The distribution of connection sizes determines how many users are expected to
be transmitting over a given time interval. At small time scales, however, the traffic
characteristics are dependent upon the manner in which users transmit individual
packets, as well as the number of users that are active. For example, over a 1 second
time interval, it can be approximated that all users with active connections were
transmitting at their average rate for the 1 second interval. However, over a 10 ms
interval, this approximation does not hold. Some active users may have transmitted
packets over a particular 10 ms interval while other users with active connections may
not have transmitted packets. The behavior of an individual user at these small time
scales is heavily influenced by TCP.

A second area of future research related to the two-scale FBM model is to derive
an expression for the combination of multiple two-scale FBM flows. In Chapter 3
we derive an expression for the delay distribution of a queue fed by multiple two-
scale FBM flows, but we do not derive an explicit expression for the aggregate traffic
stream. Such an expression would be significantly simplify the queuing delay analysis.

In terms of supporting end-to-end delay requirements there are also several in-
teresting areas of tuture research. Traffic differentiation provides benefits other than
simply bandwidth savings. In particular, traffic differentiation may allow the network

to meet end-to-end delay guarantees in the presence of unpredictable events (e.g.. a
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sudden increase in traffic volume due to a flash crowd or link failure). Link failures
can be addressed using the provisioning algorithms developed in Chapter 4. These
algorithms can be extended to handle reliability constraints, e.g., find the bandwidth
required on each link so that the end-to-end delay constraints are not violated in
the presence of N link failures. Unpredictable events such as flash crowds can be
addressed in a similar manner using the provisioning algorithms. However, what is

lacking is a model for such rare events.

5.2 Final Words

In this thesis we have seen that when network traffic is aggregated into large volumes,
many of the complex characteristics of which were due to the behavior of a small
number of users disappear. As a result, it becomes easier to understand and model
the network. Hopefully, as the Internet transitions from a period of extremely rapid

growth to a more mature infrastructure this procedure will continue.
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