INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.9., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
800-521-0600

®

UMI

IMPROVING THE PERFORMANCE OF TCP APPLICATIONS
USING NETWORK-ASSISTED MECHANISMS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Waél Khalil Noureddine
June 2002

UMI Number: 3048586

Copyright 2002 by
Noureddine, Wael Khalil

All rights reserved.

-]

UMI

UMI Microform 3048586

Copyright 2002 by ProQuest Information and Leaming Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346

© Copyright by Waél Khalil Noureddine 2002
All Rights Reserved

I certify that [have read this dissertation and that, in my
opinion, it is fully adequate in scope and quality as a disser-
tation for the degree of Doctor of Philosophy.

by

Prof. Fouad Tobagi
(Principal Adviser)

I certify that [have read this dissertation and that, in my
opinion, it is fully adequate in scope and quality as a disser-

tation for the degree of Doctor of Philosophy.

Prof. Nick McKeown
(Associate Adviser)

I certify that [have read this dissertation and that, in my
opinion, it is fully adequate in scope and quality as a disser-

tation for the degree of Doctor of Philosophy.

Prof. Nicholas Bambos

Approved for the University Committee on Graduate Studies:

e o

Abstract

In the current Internet, IP provides a "best effort", unreliable packet delivery service. End-
to-end reliability is provided by TCP. TCP also implements congestion control mechanisms,
whereby data sources reduce their transmission rate when they detect packet loss. TCP is
used by a large number of popular applications, such as Telnet, Web, Email and FTP. In
this dissertation, we identify problems with the performance of data applications, which are
attributed to TCP’s reaction to packet loss. We address these problems with the assistance
of network level mechanisms, without modifying TCP’s operation.

First, we consider switched Ethernet Local Area Networks, which are characterized by
large link speed mismatches (e.g., mix of 10Mbps, 100Mbps and 1Gbps links). In this
context, we show that an unexpectedly low throughput can result from packet loss. In order
to address this problem, we use a hop-by-hop back-pressure mechanism, as specified in the
IEEE802.3x standard. We show that this mechanism can improve network performance in
some situations, but leads to poor performance in others. We propose a selective back-
pressure scheme based on MAC address and traffic class information, which overcomes these
limitations.

Then, we move to the context of a Wide Area Network, where we use large simulation
scenarios and detailed application models to show how congestion-induced packet loss causes
unacceptably large delays for interactive TCP applications (e.g., Telnet and Web). We

address this problem using service differentiation, in the form of prioritized dropping in

network queues. First, we consider giving priority to interactive applications’ traffic in the
network, and show that this significantly decreases their delays, albeit at the expense of
non-interactive ones. Second, we present a marking scheme whereby packets are prioritized
at the source based on each connection’s TCP window size, which determines its sending
rate. We show how this scheme results in good response times for short transfers, which are
characteristic of interactive applications, without significantly affecting longer ones.
Finally, we consider the future Internet, where TCP applications are expected to share
the network with multimedia applications which use UDP (e.g., MPEG-2 compressed video).
We show how the user-perceived performance of both types of applications can be degraded
as a result of this sharing. We then demonstrate how the TCP marking described above,
along with appropriately layering the video traffic, can be used in association with prioritized
dropping in network queues to obtain excellent performance for both applications at times

where it would have otherwise been unacceptable.

Acknowledgments

I am indebted to many for their help and support, without which this work would not have
been possible. In particular, I feel deep gratitude for professor Fouad Tobagi, for his help
and support, and for his patience, advice and guidance during the past six years. [would
also like to thank the other members of my thesis. committee, professors Nick McKeown
and Nick Bambos, whose comments and suggestions helped improve the quality of this
work. Many thanks go to each one of the members of our research group, which has the
rare quality of bringing together smart, fun and interesting people. In alphabetical order, I
would like to thank the old guard, Gary Chan, Benjamin Chen, Chuck Fraleigh, Christina
Hristea, Mansour Karam, Athina Markopoulou and Jose-Miguel Pulido, as well as the young
recruits, David Hole, Lola Awoniyi and Amit Vyas. I will particularly remember and miss
Ben, Chuck, Mansour and Athina for the very interesting discussions we had on all subjects
possible.

Many other friends made my stay at Stanford the enjoyable experience it was, and [
would like to thank all of them. Special thanks to Victor Araman, Susanna Grzeschik and
Ozge K6ymen with whom I spent great times experiencing the fun of living in California. [
am also grateful to my roommates, Victor Araman and Mansour Karam for their support
when [felt low, and for making our apartment feel like home. Finally, my deepest love and
gratitude goes to my family, whose unconditional love and unwavering support give me the

strength and confidence to go through the difficulties of life. All my love to my sister Sarah

and brothers Nadim and Salam; and to my wonderful parents, Khalil and Dalal, who never

hesitated to sacrifice their own well-being for ours. To them I dedicate this modest work.

Contents

Abstract

Acknowledgments

1 Introduction

1.1
1.2
1.3
1.4

1.6

Background: The Evolution of the Internet
The Transmission Control Protocol
User Perceived Application Performance
TCP Applications e
141 Telmet e e
142 Web e e
143 FTP . . . e e e e e e e e
Multimedia Applications o oo
1.5.1 Audio Applications o L.
1.5.2 Video Applications
Service Differentiation
161 ATM e e
1.6.2 Integrated Services
1.6.3 Differentiated Services oL
Prior Work on Supporting TCP Applications

ix

vii

1.8

Dissertation Contributions

The Transmission Control Protocol

2.1

2.2
2.3

2.6

2.7

Introduction

2.1.1 Process-to-Process Reliable Data Delivery

2.1.2 Congestion Avoidance and Control

213 GoalsofthisChapter

Timeline

Reliable Data Delivery

2.3.1 Connection Establishment and Multiplexing

2.3.2 Re-ordering and Duplicate Elimination
2.3.3 Retransmissionof Lost Data.
Flow Control e
Mechanisms for Improving Efficiency
25.1 SWS . . e
252 Delayed ACKs

2.5.3 Nagle

Congestion Control

2.6.1 Tahoe Congestion Control Mechanisms
2.6.2 Reno Congestion Control Mechanisms

2.6.3 NewReno Congestion Control Mechanisms

264 TCP Vegas

.................................

2.6.3 Other Modifications
TCP Performance i i i i i i e e e e e e e e e e e e

2.7.1 General Observations

2.7.2 Large Bandwidth-Delay Networks

273 AsymmetricNetworks

274 WirelessNetworks 100
275 Local AreaNetworks 101
2.8 Active Queue Management 102
2.9 Applications’ Useof TCP 106
29.1 The Berkeley Socket Interface 106
29.2 The PUSH and URGENT Mechanisms 110
293 Telmet 111
294 FTP e e 113
295 HTTP e 115
2.10 TCP Modeling and Simulation 121
2.10.1 TCP Models 121
2.10.2 Simulation with TCP 124
211 Summary e e e e e e e e e e 126
Selective Flow Control in Switched Ethernet LANs 129
31 Introduction e 129
32 TCP'sPerformancein LANs 133
321 SimpleBottleneck 133
322 LinkSharing 139
3.2.3 Addressing TCP’s Performance Issues 142
33 IEEE8023xPauseFrame o L. 146
34 Flow-Control Scheme 148
34.1 Congestion Detection.. 148
342 Notification L e e 150
343 Conmtrol Actions 151
3.5 Flow Control Simulation Scenarios and Results 152
3.5.1 Non-Selective Flow Control 153

3.5.2 MAC Address-Based Flow Control 159
3.5.3 Traffic Class-Based Flow Control 166
3.54 Suggested Modifications to the PAUSE Frame Format 168
36 Summary e e e e e e e e e e e e e e e e e e e 170
Improving Interactive TCP Applications 173
41 Imtroduction e 174
42 Simulation Setup e 177
421 NetworkScenario 177
422 TrafficModels. oo Lo 179
4.3 The Effects of Congestion on Interactive Applications 183
44 QoSFramework 194
44.1 AssuredForwarding, 194
442 Priority Dropping. 195
443 SLAsandPolicing 197
4.5 Application-Based Differentiation 198
4.6 TCP-state Based Differentiation 204
4.6.1 Marking Algorithm o oL 205
46.2 Output Link Scheduler, 210
463 Results e 226
4.7 Summary e 236
Integrated Support of TCP and UDP Applications 237
3.1 Imtroduction e 237
5.2 Simulation Setup e 239
52.1 NetworkScepario L. ... 240
522 Priority Dropping. - 242
523 TrafficModels. L oL 242

5.3

o
o

5.6

Prior Work on Video Transmission in the Internet
5.3.1 Background on Video Compression
5.3.2 Techniques for Dealing with Packet Loss
Tail DropQueues e
5.4.1 Assessing Bandwidth Needs
5.4.2 Mixing TCP and Video Traffic
5.4.3 Separating TCP and Video Traffic
Priority DropQueues
5.5.1 Mixing TCP and Video Traffic
5.5.2 Separating TCP and Video Traffic

6 Conclusions and Future Work

6.1
6.2

ConcluSionNS o i e

Suggestions for Future Work oL

Bibliography

271
271
274

277

List of Tables

1.1

1.2
1.3

2.1
2.2
23

Average traffic share and flow statistics per TCP application, based on data

from [216, 217|, (* denotes data from [180], & denotes data from [47]). 13
Summary of analytic models for TCP applications, from [180]. 16
Models and parameters for WWW traffic, from [29]. 17
Port Numbers for Popular TCP Applications. 53
Recommended settings of RED parameters [78,83]. 104
C parameter values for the simple model of a long TCP transfer throughput,

from (149 and [174]. L L 122
Threshold values for the different drop priorities. 242
Bandwidth characteristics of the Video tracesused. 243
Bandwidth characteristics of the layered video traces used in this study. . . . 249

List of Figures

1.1
1.2

1.3

2.1

2.2

23

26
2.7
28

TCP/IP protocol architecture.

Approximate bandwidth and delay requirements for popular TCP applica-

tions (data based on various sources including [36, 145, 180, 206]).

DiffServ architecture components

TCP header format. The data offset field indicates the length of the header,

which depends on the presence of options, in multiples of 4 bytes.

A system view of TCP’s mechanisms for reliable data delivery and congestion
control.
TCP connection establishment and initial phase of a data transfer. The dia-
gram on the left corresponds to the case where the receiver is using delayed
ACKs. The diagram on the right corresponds to a receiver that acknowledges
all segments.

TCP windows.

Summary of TCP’s congestion control mechanisms showing the differences

between Tahoe, Renoand NewReno.

TCP congestion control mechanisms in action.

RED drop function.
Telnet traffic with Nagle and delayed ACKSs (left diagram) and without (right

diagram). e

.......................................

....................................

................................

69

113

2.9 File transfer from server to client, using FTP (left diagram) and HTTP (right

diagram). The diagram for HT TP assumes the congestion window is increased

upon reception of the ACK for the SYN-ACK. 114
2.10 Comparing Web page download (HTML file and 1 image), using HTTP/1.0

(left diagram) and HTTP/1.1 (right diagram). 116
3.1 Link speed mismatch scenario. 134
3.2 Throughput in Mbps of fixed-size TCP transfers for different bottleneck buffers,

plotted against the file size. The top graph corresponds to Drop Talil, the bot-

tomonetoRED. e 137
3.3 Throughput in Mbps of fixed-size TCP transfers for different transfer sizes,

plotted against the RTT.. 138
3.4 Throughput in Mbps of 100KB TCP transfers for different bottleneck buffers,

plotted against the number of parallel connections. 139
3.5 Linksharingtopology., 140
3.6 Aggregate throughput in Mbps of transfers from Sl to D1, as a function of

the transfer size, and for different number of such transfers in parallel. 141
3.7 Aggregate throughput of 1 (top figure) and 5 parallel (bottom figure) transfers

from S1 to D1, and for the connection between S2 to D2, as a function of the

transfer size between S1 and D1, for RED queues. 143
3.8 Throughput in Mbps of transfer from S1 to D1 (top graph), and aggregate

throughput of transfers from S2 to D2 (bottom graph) as a function of the

transfer size between S2 and D2, for a different number of such transfers in

parallel. e 14
39 The IEEE802.3x PAUSE control frame format. 147
3.10 Components of a generic flow control scheme. 149

3.11 Link Speed Mismatch scenario: achieved throughput versus number of TCP
connections

......................................

3.12 Traffic Merging Scenario

...............................

3.13 Traffic Merging Scenario: aggregate throughput versus file sizes, for different
numbers of sources

..................................

3.14 Input Link Speed Mismatch Scenario.

3.15 Input Link Speed Mismatch Scenario: aggregate throughput from S1 to D
versus the file sizes, for selected numbers of connections (solid lines: without
back-pressure, dashed lines: with back-pressure).

3.16 Destination Address-Based Differentiation.
3.17 Destination Address-Based Differentiation, Scenario 1. Throughput achieved
for each destination, versus the number of TCP connections between S1 and
D1, without back-pressure.
3.18 Destination Address-Based Differentiation, Scenario 1. Throughput achieved
for each destination, versus the number of TCP connections between S1 and
D1, for with and without back-pressure (simple and destination MAC address
based). e e e
3.19 Throughput achieved for each connection, versus the number of TCP con-
nections between S1 and D1, with non-selective back-pressure and S1 non-
responsive.

.....................................

3.20 Destination Address-Based Differentiation, scenario2.

3.21 Destination Address-Based Differentiation, Scenario 2. Solid lines: through-
put achieved between S2 and D2 versus the file size used in the connections
between S1 and D1, for selected numbers of such connections, with “simple”

back-pressure. Dashed lines: throughput achieved between S1 and D1 for
destination-address-based back-pressure.

3.22 Multimedia traffic scenario. Source S1 is sending 200KB files in parallel and

S2 issending avideostream. 166
3.23 Multimedia traffic scenario: video packet CCDF, with “simple” back-pressure,

for selected numbers of data connections between Sland D. 167
3.24 CCDF of video packet delays for different threshold margins. 168
3.25 Suggested modifications to the PAUSE frame format. 169
4.1 Network Topology. e 178
4.2 HTTP Models. HTTP/1.0 and HTTP/1.1 differ in the way embedded images are

transferred. L. e 181
4.3 CCDF of HTTP/1.0 and HTTP/1.1 downloads for different bottleneck speeds,

and drop tail queuesinallrouters. 185
4.4 CCDF of HTTP/1.0 downloads for different numbers of images per page, keeping

the page size fixed, and with a 60Mbps bottleneck. 186
4.5 Top graph: CCDF of HTTP/1.0 download times for different buffer sizes and

60Mbps bottleneck link. Bottom graph: CCDF of HTTP/1.0 download times

for different buffer sizes and 60Mbps bottleneck link, comparing RED (solid

lines) and drop tail (dashed lines) queues. 187
4.6 Percentage of HTTP/1.0 page downloads exceeding 10 seconds for different

bottleneck buffer sizes, 60Mbps bottleneck link. 188
4.7 CCDFs of HTTP/1.0 download times obtained when increasing the bottleneck

link speed (with a 500KB buffer, dashed lines) versus increasing the buffer size

on a 60Mbps link (solid lines). We contrast pairs of curves having comparable

droprates. e e e e e 189
4.8 CCDF of Telnet echo delays of an 80msec RTT connection for 60Mbps and

100Mbps bottleneck links. 191

4.9

4.10

4.11

4.12
4.13

4.14
4.15

1.16
4.17
4.18
4.19
4.20
4.21
4.22

4.23

4.24

CCDF of Telnet echo delays of a 120msec RTT connection for 60Mbps bottle-
neck link and different bottleneck buffersizes. 192
Performance with modified TCP parameters. Top graph: Telnet echo delays
for regular TCP and TCP using finer clock granularity (20msec vs 200msec).
Bottom graph: CCDF of HTTP/1.0 downloads for initial RTO of lsec. 193

Drop function used in network buffer management. The threshold values are

given as percentage of total buffersize. 0L 196
Application-based differentiation mechanisms. 199

CCDF of HTTP/1.0 downloads for different bottleneck speeds, and application-
based differentiation with HTTP token rate of 110Kbps (solid lines) vs 250Kbps
(dashed lines). e 200
Telnet echo delays for multi-queue and single queue differentiation. 202

CCDF of FTP file transfer times with and without application-based differen-

tation. e e e e e e 203
TCP-state based service differentiation mechanisms. 204
Merging all packets in asinglequeue., 211
Framework for the scheduler module designs. 213
Interface-level scheduling., 215
Class-level scheduling. 217
Connection-level scheduling. 219
CCDF of HTTP/1.0 downloads for different bottleneck speeds, HIGH rate 250Kbps,
MEDrate500Kbps. 227
CCDF of HTTP/1.0 downloads for different bottleneck buffer sizes, comparing

DT (dashed lines) and TCP-DS (solid limes). 228
CCDF of Telnet echo delays for different bottleneck buffer sizes, 120msec RTT
COMMECLION. ¢ i i i ittt it e e e e e e e e e e e e e e 229
CCDF of HTTP/1.0 downloads and Telnet echos for different schemes. 230

4.26
427

4.28

4.29

4.30

5.13

Number of files transmitted by the probes for different schemes. 231
Comparing the CCDFs for 200KB file transfer times of different schemes, for a

75Mbps bottleneck link. The bottom graph shows the curves for an individual

connection with 80msec RTT. 232
CCDF of FTP file transfers for different bottleneck buffer sizes. 233
Long FTP throughput normalized to fair share as a function of the marking

thresholds. 234

Long FTP throughput vs. time for DT (dashed lines) and TCP-DS (solid lines). 235

Network Topology. 240
Video traffic used in the simulations. A video stream is formed by concate-

nating different video sequences.
System view of video transmission and performance evaluation. 244
Assessing the bandwidth needs of TCP sources alone, without video traffic. . 251
Assessing the video traffic bandwidth requirements alone, without TCP traffic.252
Interactive TCP application performance, mixed with video traffic. 254
Video quality, mixed with TCP traffic. 255
Amount of excess bandwidth required when mixing TCP and video traffic, as

a function of the load offered by the TCP sources. 257
Video quality for a data traffic load of 170Mbps., 258
Separating TCP and video traffic in two queues, served by a WRR scheduler. 259
Separating TCP and video traffic. 260
Video quality with layering, comparing random early drop (dashed lines) and

regular threshold-based drop (solidlines). 262
Web performance and video quality, comparing the TCP-state based scheme

(TCP-DS, solid lines), and mapping all TCP traffic to the MED priority

(TCP-MED, dashed lines) 263

5.14 FTP transfer times, comparing TCP-state based marking (TCP-DS, solid
lines) and application-based marking (APPL, dashed lines). 264
5.15 Video quality and Web performance for separate queues with priority drop-
ping, for a 100Mbps (dashed lines) and 125Mbps (solid lines) bottleneck. . . 266
5.16 Layered video quality and TCP-state based marked Web performance, when
each traffic type is alone in thenetwork. 267

xxiv

Chapter 1

Introduction

1.1 Background: The Evolution of the Internet

Throughout the past two decades, the Internet has been continuously expanding along two
axes: (i) reach and connectivity, and (ii) services, usages and applications.

The geographic expansion and population growth of the Internet have been exceptionally
fast, particularly over the last decade. Internet connectivity is now available practically
everywhere on the planet, and it is estimated that the number of connected users worldwide
has followed an exponential rate of increase since the early 1990’s (increasing from a few
tens of thousands to more than half a billion) [168]. Higher access speeds (broadband) are
becoming available to end-users and allow more applications to be supported. In addition,
with the increasing deployment of wireless access networks and portable network devices,
continuous tether-less Internet access to mobile users is becoming a reality.

Simultaneously, the Internet has expanded in terms of the services and applications
supported. The development of the HyperText Markup Language (HTML, introduced in
1989, first specification in 1995 [33]), the HyperText Transfer Protocol (HTTP, introduced
in 1990, first specification in 1996 [34]), and the National Center for Supercomputing Ap-
plications (NCSA) Mosaic browser respectively allowing the encoding, transfer and display

CHAPTER 1. INTRODUCTION 2

of interactive content, created the World Wide Web (WWW). The Web helped popularize
the Internet, and introduced it to most organizations and homes. In addition, technological
advances allowing faster transmission and switching rates opened the way for richer, more
resource hungry media such as video to be deployed. Thus, the last decade has seen us
growing increasingly reliant on the services provided by the Internet, and the World Wide
Web in particular. Many of our daily life activities, from information and entertainment, to
telecommunication and commercial transactions are now performed, at least in part, over
the Internet. These activities benefit from the global reach of a single network, and the
support of and the ease of on-demand access to many media types: data (text, images,
etc...}), voice and video.

In this dissertation, we are interested in popular data applications, which have widely
different characteristics and requirements. Our goal is to investigate their performance in
the network, and to meet their requirements by means of network-assisted mechanisms.
The remainder of this section discusses the evolution of the Internet and the packet delivery
service it provides, while the following section discusses TCP, the transport protocol used
by data applications in the Internet.

Evidently, the Internet, which a decade ago was still an experimental research network,
has evolved into a commercial network of significant business value. Key to the Internet’s
success have been the robustness, simplicity, flexibility and versatility of its underlying
protocol architecture, known as TCP/IP.

The origins of the TCP/IP architecture date back to the early 1970’s, when a single
protocol for network interconnection, the ancestor of the current TCP and IP protocols, was
proposed by Cerf and Kahn [51]. The protocol, named Transmission Control Protocol, had
for goal to connect several dissimilar and separately administered computer networks, into a
larger decentralized network, allowing communication between any 2 hosts in that network,
and without requiring any changes to the individual networks. In particular, the design was

intended to connect the existing U.S. Department of Defense Advanced Research Projects

CHAPTER 1. INTRODUCTION 3

Agency (DoD ARPA, currently known as DARPA) networks, namely the ARPANET and
the ARPA Packet Radio Network, two military-funded research networks [57]. The design

was concerned with the following aspects of inter-networking:

Addressing Different networks have differing ways of addressing (naming and reaching)
receivers. Inter-network communication requires a uniform way of addressing receivers

throughout the internetwork, and routing information across different networks.

Maximum Packet Size The maximum transfer unit in different networks varies, and
therefore procedures for finding and using the smallest maximum packet size, and/or

for fragmenting packets at network boundaries are needed.

End-to-End Reliability The possibility of failures within each network, and in general,
the lack of assurance of delivery for packets render end-to-end reliability mechanisms
necessary. These include the use of a checksum for data integrity, and retransmission

mechanisms for recovering lost packets.

Delays Internetwork communication requires procedures for dealing with delay variability

across different networks, when assessing the success or failure of a transaction.

In order to interconnect a variety of network technologies, and to accommodate future ones,
the Internet architecture makes very weak assumptions about the capabilities of the under-
lying network technology. Thus, minimal or no requirements are placed as to capabilities
for signaling information regarding connectivity, link speeds and delays, failures and other
errors, or for providing quality of service. What is required from each network is the “min-
imum network service” [57], a packet delivery service allowing messages to be delivered to
the appropriate destination on the network. This is a very simple requirement which most
networks inherently provide. For example, in an Ethernet LAN, the delivery of datagrams
to the appropriate destination station is achieved by encapsulating them in MAC frames la-

beled with the destination’s MAC address. Inside the network, switches forward the frames

CHAPTER 1. INTRODUCTION 4

to the destination based on the MAC address. If a packet were to be delivered over the
telephone network, the nodes’ addresses are their phone numbers, and a connection can
be established between two endpoints wishing to communicate by placing a regular phone
call. The packet can then be transferred over the voice circuit by using a digital to analog
modulator at the sending end, and a demodulator at the receiving end. Finally, on a point
to point link, proper delivery of packets does not require the use of addressing. While net-
works take care of routing packets within, the routing of packets in the inter-network is the
responsibility of the IP protocol. Thus, the Internet is a packet switched network, formed
of the interconnection of many different networks. As in any network design problem, there
was a fundamental choice between circuit and packet switching as the technique for com-
munication. In circuit switching, as used in the telephone network, a connection needs to
be established before communication takes place, and forwarding resources (processing and
bandwidth) are reserved on all links on the path between two communicating end-points
for the duration of the connection. Packet switching, on the other hand, does not require
a connection to be established. Instead, individual packets carry the necessary information
for them to be routed to their destination.

The motivation for using packet switching in the Internet is threefold.

First, this choice has to be made based on the application intended for the network.
The use of packet switching in computer networks is motivated by the need for efficient
data communication between computers [28, 133, 134]. Data traffic, in contrast to the
stream traffic of voice and video applications, is bursty in nature, with a large peak to
average bandwidth ratio. Furthermore, while the incentive to do so did not exist in the
established circuit switched networks, it is possible to compress streaming voice and video
applications traffic, reducing the bandwidth demand they place on the network, with little
loss of quaﬁty. For example, voice traffic can be reduced by suppressing the redundant data
generated during silence periods, which account for 55 to 65% of typical conversations [46].

Similarly, video compression algorithms, such as MPEG-2, can drastically reduce the average

CHAPTER 1. INTRODUCTION

W

rate of a stream without significant loss of quality. The resulting traffic then becomes bursty.
Circuit switching is not adequate for bursty traffic for the following reasons. Using circuits
to transfer bursts of data either leads to large delays (if the reserved bandwidth corresponds
to the average data rate), or leads to inefficient use of the available bandwidth and high
call blocking probability (if the reserved bandwidth corresponds to the peak data rate), or
to large connection establishment overhead (if an individual connection is opened at the
peak rate for each burst). In contrast, packet switching allows the statistical multiplezing
of traffic from a multitude of conversations sharing the switching nodes, and leading to the
accommodation of a substantially larger number of simultaneous conversations.

Second, packet switching provides a survivable network infrastructure [28]. DARPA was
interested in secure computer and voice communication networks for military command and
control applications. Therefore, in connecting the different networks, survivability in the face
of failures and attacks was an important design goal. Survivability would clearly be enhanced
if the state associated with each connection, if any, is kept at the communicating endpoints,
and no state is kept in intermediate network switches. In packet switched network, all
the information required for forwarding packets is contained in the packet headers, and
forwarding decisions are made individually for each packet. Internet gateways only keep
information that is required for their role in routing packets in the network. Thus, when a
node is lost in the network, it might be possible to avoid loss of communication, since ongoing
connections can be re-routed without the need for re-establishment. For this reason, the two
DARPA networks that were to be initially connected were packet switched networks.

Finally, incorporating different types of networks is easier when the service required from
each network is simple. In this regard, the packet is superior to the circuit, since it is a more
elemental service, but still can be used to support any type of traffic. Thus, the packet
appeared to be the appropriate choice for such a network, and it has helped successfully
incorporate widely different networking technologies into the Internet.

While the packet switched nature of the Internet was a basic premise, originally, the

CHAPTER 1. INTRODUCTION 6

: Application Layer |
|;---\ — - -y -y —— .y, — 4——-—\|
i . [1 4 [| [[N}
,\ Voice | | Video . FTP , | Email | | HTTP | | Telnet
LD L L e T S T L I I I LTI L SIS o
UDP TCP
Datagram service Reliable in order byte stream delivery.
Mulriplexing Mulriplexing, end—to—end flow control
Congestion control

P

Routing, fragmentation/reassembly

Figure 1.1: TCP/IP protocol architecture.

inter-networking protocol (original TCP) provided a single service across the internetwork:
a connection oriented, reliable byte stream transport service [51]. However, since reliability
is not the main requirement for all applications (in particular voice and video communi-
cations, which are more concerned with delay), it was realized early on that reliability
mechanisms introduce delays which may actually hinder the proper operation of such appli-
cations. Therefore, the basic packet delivery service was separated from the reliable stream
transmission protocol, leading respectively to the current IP and TCP as separate entities.
The User Datagram Protocol (UDP) was added to allow applications direct access to IP’s
services. The resulting TCP/IP protocol architecture is shown in Fig. 1.1. Although the
different applications requiring reliability which were popular at the time, namely remote
login, Email and file transfer, had different characteristics and requirements, it was thought
that TCP would be able to adequately support them [57].

The current Internet Protocol (IP) provides the basic building block, a unified packet

switched service which connects different networks. It defines a uniform addressing scheme

CHAPTER 1. INTRODUCTION 7

and common packet format (called datagram) which allow inter-network communication.
Different networks are connected by packet switches, called Internet gateways, which per-
form two main functions at the boundary of the networks. The first function involves trans-
lating datagrams to forms that are understandable in the next hop network on their path,
for example, encapsulating datagrams in the network’s packet format, and the fragmenta-
tion of large datagrams, if necessary. IP specifies the procedure used by gateways when
fragmenting packets, and the IP header contains the appropriate fields that allow hosts to
identify fragments and reassemble them correctly!. The second function is the routing of
packets to the appropriate next hop network, or to the destination host if the gateway and
the destination reside on the same network.

The Internet suffers from drawbacks associated with the use of packet switching, which
do not exist in the context of circuit switching. First, since packets belonging to a connection
are routed individually in the network, it is possible for them to arrive out-of-order to the
destination. Second, packet switched networks are prone to the occurrence of congestion
leading to packet delays and loss. Indeed, performing admission control, which is necessary
for preventing congestion inside the network, and thereby guaranteeing quality of service, is
a more difficult task in a packet switched network than in a circuit switched one. Thus, with
the unregulated access that users have to the Internet, IP does not provide any guaranteed
quality of service (i.e., when or even if packets would be delivered). For this reason, it is
commonly referred to as “best effort” service. In the TCP/IP architecture, the problems of

packet re-ordering and loss are addressed by TCP, which we discuss in the following section.

'The main reason for restricting reassembly to end hosts is that a gateway may not necessarily see all
of the fragments of a given datagram, since different fragments may take different routes in the network,
thereby preventing communication from taking place. Hosts need this functionality anyway, since the last
hop gateway might have to fragment the datagram [51].

CHAPTER 1. INTRODUCTION 8

1.2 The Transmission Control Protocol

With IP providing end-to-end connectivity, TCP builds over IP’s “best-effort” delivery a
reliable, in-order byte stream transfer service between two end-hosts. It incorporates a
sliding window mechanism which allows it to efficiently use long delay paths by keeping
multiple packets (called “segments”) in flight, and uses sequence numbers to re-order bytes
at the receiver end, and positive acknowledgments with timeout-based retransmission to
detect and recover from loss. The sliding window size is dynamically determined based on
on a value returned by the receiver, and on network conditions. Indeed, TCP incorporates
a flow control scheme, which allows a slow receiver host to throttle the sending rate of a
faster source host, in order to avoid buffer overflow and packet drops at the destination.
The scheme relies on the source abiding by a limit on the amount of data that it can
keep outstanding, which is returned by the receiver in each acknowledgment. Finally, TCP
enables process-to-process communication, by multiplexing traffic to different processes at
a host through the association of a unique number with each process, called a TCP port.
Thus, a TCP connection is uniquely identified by the source and destination [P addresses
and port numbers.

While the original TCP specification [190] included all the above mechanisms, it severely
lacked in one important aspect, which is congestion control. During the time between the
original standard specification (1983) and 1987, when the first TCP version incorporating
congestion control mechanisms was released [119], the Internet had suffered several cases
of severe, incapacitating congestion. Indeed, during this period, the Internet had evolved
from a small network consisting of hosts and links of fairly homogeneous capabilities, to a
larger web connecting hosts of varying capabilities over networks of widely different speeds,
ranging from low bit rate leased telephone lines (e.g., a few Kbps) to high speed Local
Area Networks (e.g., 1I0Mbps Ethernet LANs). Inevitably, the bottlenecks created by link

speed mismatches lead to congestion and packet loss. Then, retransmissions of lost data as

CHAPTER 1. INTRODUCTION 9

well as unnecessary retransmissions would overwhelm the network, causing more loss, and
slowing the network down to a crawl. The congestion control mechanisms introduced by
Jacobson and Karels in 1987, helped defuse this situation by having sources reduce their
sending rate after they detect congestion. The mechanisms introduce the notion of sending
window, which is the actual limit on the arnount of outstanding data, and is computed as
the minimum of the receiver window and a new, “congestion” window that is dynamically
changed according to network conditions. We go into more details of the operation of TCP
in Chapter 2.

While reliable in-order delivery over the Internet is a practical reality, providing the right
quality of service to applications that have other requirements remains an unsolved problem
to this day, and is currently one of the main challenges facing the Internet. Clearly, for
it to succeed in its new role as a converged network, which integrates all traffic types and
services, the Internet needs to provide the appropriate quality of service to all applications,
a pre-requisite for satisfactory user-perceived performance. For example, video and audio
communications have stringent requirements on the end-to-end delay and jitter experienced
by each packet. Although the support of voice and video was a concern early on in the
development of the Internet, considering the role of video-conferencing in military command
and control applications, little was done to achieve this goal. In fact, the IP header does
include service level information in the form of a Type of Service (TOS) field. Practically,
however, neither the end stations nor the infrastructure made use of it. This can partly be
explained by the lack of a standard way of using this information. Indeed, it was originally
thought that multiple levels of service can be provided without explicit support from the
underlying networks. However, it soon appeared to be difficult to use a network designed for
one particular type of service to provide a different service. For example, networks which use
retransmissions to provide reliability may fail to provide low delay service [57]. Currently,
significant efforts at standardizing quality of service at both the Internet and lower layers

are underway. We go into more details regarding these efforts in Section 1.6.

CHAPTER 1. INTRODUCTION 10

Stringent quality of service requirements are not restricted to voice and video applica-
tions. Until recently, the norm has been to consider that TCP applications do not have such
requirements, and are content with “qualitative” rather than “quantitative” service. While
this used to be true to a certain extent for the main “traditional” data applications, namely
file transfer and Email, this can no longer be satisfactory as an approach to servicing all
of today’s data applications. Indeed, there is now a wide variety of popular data applica-
tions, which differ considerably in their characteristics, requirements and importance to the
users. Moreover, it is important to take into account that the Internet has evolved from
an experimental network, where user expectations are modest, to a commercial network
where paying users have increasingly higher expectations. This has placed higher de-facto
requirements for all applications, including traditional ones, such as Email, which is now
widely used as a critical communication tool [36, 40|. In addition, the nature and impor-
tance of the transactions for many of today’s data applications require fast response time.
For example, business transactions over the Web (e.g., stock trading), remote login and
interactive data applications in general, have requirements which go beyond reliability to
include low transaction delay. Finally, the attractive properties of the TCP/IP protocol
suite, and the availability of inexpensive equipment and trained personnel are driving it into
new application areas which require very high performance, such as storage area networks
(SANs). As we show in this dissertation, the interaction of TCP’s reliability and congestion
control mechanisms with packet loss in the network can result in poor performance for such
applications. Therefore, it is essential to re-examine the requirements of individual TCP
applications, and to consider their particular working details, if each were to be adequately
supported in the network.

In this dissertation, we assess the performance of TCP applications which have quality
of service requirements during network congestion episodes. We identify a set of problems
with these applications in different network environments, which we attribute to TCP’s

reaction to packet loss. To address each of these problems, we use network assisted solutions,

CHAPTER 1. INTRODUCTION 11

without requiring changes to TCP’s mechanisms. In the remaining sections of this chapter,
we proceed in Section 1.3 to present some observations related to the performance of data
applications as perceived by users, obtained from several recent subjective quality studies,
and which guide us in our efforts to better support such applications. Section 1.4 is devoted
to a discussion of the different types of TCP applications currently in use. We describe
the characteristics and requirements of these applications and attempt to classify them
accordingly. Then, we focus on three representative data applications, namely FTP, Web
and Telnet, and study their characteristics in detail. In Section 1.5 the characteristics and
requirements of voice and video applications are described. This discussion motivates the
need for service differentiation in the Internet, and we devote Section 1.6 to the different
approaches for service differentiation proposed by the networking research community and
the networking industry, and which have for goal the integrated support of all traffic types.
In Section 1.7, we review prior work on supporting data applications in networks with service
differentiation. Finally, the last section of this introductory chapter gives an overview of the

research contributions presented in this dissertation.

1.3 User Perceived Application Performance

While network-level performance measures (e.g., packet loss, throughput and link utilization)
are important in their own right, when assessing the performance of network applications
it is important to consider user-level performance measures, which reflect the quality as
perceived by end users. Indeed, it is often the case that such measures, e.g. response time,
do not correlate with network performance measures.

Human-computer interaction studies have shown that the user-perceived performance
of network applications is a complex function of a combination of factors pertaining to the
user, the application and the task at hand. We summarize below the main findings of several

such studies [36, 40, 206].

CHAPTER 1. INTRODUCTION 12

Predictability Studies have shown that users value predictability, and might accept lower
average quality as long as it remains predictable, and allows them to form realistic

expectations regarding the completion time of the task at hand.

Need for Feedback Providing fast feedback to users increases their acceptance for higher
transaction delays, by helping them predict the completion time of the task. In general,
feedback reassures users that the operation is progressing and that the system is still
operational, and should be sent back within 5-10 seconds of the reception of a request.
A typical example of such feedback is the progress indicator bar. Another example is
the incremental loading of Web pages, where the different constituents of a Web page
are displayed as soon as they are received, which has been found to increase the delay

tolerance of users up to six fold [36].

Nature of Application User requirements clearly depend on the nature of the applica-
tion. For highly interactive applications, where the transaction consists of low-level
feedback, users need short response times (e.g., in the order of 150msec [206]), oth-
erwise the operation would appear sluggish. Such responses include character echos
in remote terminal login or mouse movements in remote graphical desktop access. In
addition, low delay variance is needed, otherwise the operation appears erratic [41].
For interactive applications with higher level feedback, such as the WWW, transaction

delays in the order of seconds are required (e.g., less than 5 seconds [36}).

Nature of Task The importance of the task at hand is inversely related to the willingness
of users to accept lower levels of service. Users have different expectations depending
on their beliefs about the complexity of the transaction (e.g., if it involves processing
at the server end), and accordingly perceive the quality differently. In addition, users’
frustration with delays accumulates and therefore their tolerance to delays decreases

with the number of consecutive repetitions of a task [36].

CHAPTER 1. INTRODUCTION 13

Two steps need to be performed in order to assess the quality of service each application
receives.

First, appropriate quantitative measures of quality, which would reflect meaningful
changes at the user-level, have to be collected. In the context of TCP applications, packet
loss is recovered by TCP and its effects are perceived by the users in the form of delay
as TCP’s reliability mechanisms are invoked. Therefore, for each application we define an
atomic transaction, which is the unit of work meaningful at the user level, and use trans-
action delay as the performance measure. In this regard, we do not consider the notions of
fairness or relative performance (e.g., user 1 should get better performance than user 2) as
critical, since they are not necessarily perceptible or relevant to the users. For multimedia
applications, such as video, we use performance measures that rely on studies of the human
visual system and reflect the subjective quality of video transmission [227].

Second, a qualitative assessment of quantitative data is needed, relying on results from
human studies of subjective quality perception, which provide pointers as to the acceptable
response times for the different TCP applications. We discuss the requirements of these

applications in more detail in the following section.

1.4 TCP Applications

TCP applications account for the large majority of today’s Internet traffic. A measurement
study [216] of several Internet backbone links conducted in 1997 found that close to 95% of
traffic is carried by TCP, with about 75% consisting of HTTP (Web) traffic alone. These
measurements have since been corroborated by other studies, such as [92], which confirm
the preponderance of TCP traffic in the Internet. While the proportion of traffic using UDP
may increase as streaming multimedia applications get deployed, TCP traffic is expected
to retain the majority share for the near future. In fact, firewalls often filter UDP traffic,
forcing all applications (including streaming multimedia) to use TCP for transport.

CHAPTER 1. INTRODUCTION 14

While the term “quality of service” is commonly used in reference to real-time, streaming
application traffic (e.g., voice and video), the predominance of data applications in today’s
Internet, and their importance in our daily life, behoove us to ensure an appropriate quality
of service for these applications as well. Although TCP normally provides adequate perfor-
mance to the different applications, we all have experienced the severe quality degradation
that befalls interactive TCP applications, such as Telnet and the Web, during network con-
gestion episodes. Indeed, interactive data applications have requirements comparable to
those of real-time applications, and therefore need similar care in the network. As a first
step towards insuring optimal user perceived performance of TCP applications at all times,
it is important to understand the requirements of such applications and their behavior in
the current “best effort” Internet.

The composition of traffic per application is shown in Table 1.1, based on measurements
from the MCI Internet backbone, published in [216, 217]. As indicated earlier, the largest
portion belongs to the Web application (75%), with server generated traffic amounting to
about 68% of the total, owing to the asymmetric nature of the Web client-server interaction.
However, not all HTTP traffic is interactive. Indeed, HTTP is used both for the transfer
of interactive Web pages and, as an alternative to FTP, for the transfer of large documents
and multimedia files over the Internet. Unfortunately, the figure above does not show how
this portion is divided among interactive Web transfers and non-interactive ones. However,
recent measurements seem to indicate that a limited number of long transfers (e.g., 20% of
flows) account for the majority (e.g., 60%) of the traffic [92]. In addition, these measurements
show that the emergence of new applications, such as peer-to-peer file sharing (e.g., Napster
and Kazaa), can significantly alter the breakdown of traffic by application on some links.
Email and FTP come second in terms of the amount of traffic they generate, followed by
newsgroups and Telnet, which generate a small but measurable amount of traffic.

Considering the traffic share of each application, it is evident from the average flow

statistics shown in Table 1.1 that the characteristics of application flows differ considerably.

CHAPTER 1. INTRODUCTION

Share Flow Statistics
Application | Bytes | Packets | Flows Duration Bytes Packets
Web server | 68 % 40% 40% 12 sec 10,000 16
Web client | 7% 30% 35% 12 sec 1,000 15
Email 5% 5% 3% - 1,500-2, 000* -
FTP data 5% 3% 1% 20 - 500 sec 200,000 -
NNTP 2% 1% 1% | 100 - 200 sec 50K-300K 200 - 800
Telnet 1% 1% 1% | 100 - 250*sec | 2,000-5, 000" 100%
Other 6% 20% 19% - - -

Table 1.1: Average traffic share and flow statistics per TCP application, based on data from
[216, 217], (* denotes data from [180], & denotes data from [47]).

For example, according to these figures, an average HTTP server flow lasts for 12 seconds,
and generates 10,000 bytes. In contrast, an average Telnet flow lasts 10 to 20 times longer,
but generates 2 to 5 times less traffic. A great deal of effort at characterizing the different
TCP applications, based on real Internet measurements, has been spent over the last decade.
While most have focused on Web traffic, for obvious reasons, several studies conducted before
the explosion in WWW traffic ([47, 180, 216|), address the basic characteristics of the other
popular applications and attempt to represent them with analytical models. These models
capture the distributions of the random variables, such as bytes or packets transferred and
session duration, associated with each application. Table 1.1 summarizes this information.
Most parameters have distributions that exhibit slowly decaying tails, such as lg-normal, lg-
extreme and Pareto, which means that very large values of these parameters are common?.

The lg-normal distribution is defined as follows. A random variable X is said to have

a lg-normal distribution if the random variable Y = Ig X has a normal distribution. The

probability density function of the normal distribution with mean u and variance o2 is:

2
e—uz_ﬁL

P(y) = .

The lg-extreme distribution is defined as follows. A random variable X is said to have

2Note that Ig here denotes log base 2.

CHAPTER 1. INTRODUCTION 16

Application Variable Model Parameters
Email Sender bytes lg-normal | ¥=2'% 0, =275
NNTP Sender bytes lg-normal X=115,0. =3
Telnet Client bytes Ig-extreme | a = [g100,8 = [g3.5

Server bytes lg-normal | X=4,500,0; = 7.2
Duration (seconds) | lg-normal X=240,0, =78

Table 1.2: Summary of analytic models for TCP applications, from [180].

a lg-extreme distribution if the random variable Y = Ig X has an extreme distribution.
The cumulative distribution function (F(y) = P{Y < y}) of the extreme distribution with

location parameter a and shape parameter 3 is as follows:

_{z=a)

F(y)=e¢

The probability density function of the Pareto distribution with location parameter a

and shape parameter 3 is:

Ba

xB'i'l

P(z) =

and its cumulative distribution function is:

Flz)=1- (92’-)'3

The Pareto distribution has infinite variance when 8 < 2 and infinite mean when 8 < 1.
As shown in Tables 1.1, and 1.3, popular TCP applications have greatly different charac-
teristics. These applications also have widely different requirements, which can be classified
along two axes: bandwidth and delay. Fig. 1.2 attempts to illustrate the large spectrum of

such requirements for current TCP applications. At the lower end of both requirements are

3 Another popular notation uses k as location parameter and a as shape parameter. We prefer the notation
above for consistency.

CHAPTER 1. INTRODUCTION 17

Component Model Parameters Probability Density Function
Transfer bytes - body | lg-normal | u =9.36, 0 = 1.32 | p(z) = me'(‘""""wz/ 348
Transfer bytes - tail | Pareto | a=133K,8=11] p(z)=1.1(133,000)-'z=%"

Popularity Zipf
Request size bytes Pareto a=1K, =1 p(z) = 1,000z~*
No of embedded files | Pareto a=1, =243 p(z) = 2.4373%

Table 1.3: Models and parameters for WWW traffic, from {29].

applications such as remote login (Telnet and secure login ssh), where the generated traffic
is of low bandwidth, but very low per-packet delays are required. At the opposite end are
applications that generate large amounts of bulk traffic, with relaxed timing requirements,
a typical example of which is system backups. Between these two extremes are applications
which have low delay and moderate bandwidth requirements, such as Web downloads and
Email. Other applications have very low delay requirements along with moderate to high
bandwidth requirements, such as real time gaming and remote graphical desktop access.
Clearly, the transactions associated with the different applications occur at different
time scales. For performance evaluation, we classify TCP applications based on the level of
interactivity they involve. For interactive TCP applications, when bandwidth requirements
are not satisfied, i.e. when the network is congested, packet loss typically occurs. Loss
is then translated by TCP’s reliability mechanisms to delay in completing the transaction
at hand. It is therefore possible to focus on the delay requirement alone when studying
the performance of such applications. For our purposes, delay refers to the time spent in
one transaction, the definition of which varies per application. We thus consider an HTTP
transaction to be the download of a Web page, which might include several embedded
components, requiring distinct transfers. Similarly, an FTP transaction consists of the
transfer of one file from the server to the client or vice-versa. Naturally, an Email and
NNTP transaction is considered to be the exchange of an email or news message between
end users and the appropriate server, or between two servers. Finally, we consider a Telnet

transaction to be the time between typing a character at the terminal side, and the reception

CHAPTER 1. INTRODUCTION 18

£
5
Y | .
% remote Medical image
5 desktop transfer
< access
1Mbps™] FTP and
non-Interactive
WWW
- Interacti
100Kbps wwwme
instante\
- messagi
10Kbps ssaging
L 1 L
1] T de;
100msec 1sec 10sec Y

Figure 1.2: Approximate bandwidth and delay requirements for popular TCP applications
(data based on various sources including [36, 145, 180, 206}).

of the corresponding echo generated by the server.

In general, a faster response or task completion time is preferable regardless of the appli-
cation. It could arguably be possible to provide very low response times to all applications
by investing the necessary amount of resources in user nodes and in the network. However,
this approach can be cost prohibitive or even impossible in some situations, e.g. when the
resources are naturally limited, such as on the wireless communication medium. Instead,
an adequate user-perceived performance may be provided for all applications, at reasonable
cost, by prioritizing applications according to their importance to the user and ensuring that
delay requirements of the most important applications are satisfied.

Application delay requirements depend on the complexity of the task and the level of

interactivity that the application involves. For TCP applications, we can identify three

CHAPTER 1. INTRODUCTION 19

levels of interactivity, differing by about an order of magnitude in terms of the response

time requirement for each, as follows:

High These applications are characterized by low level feedback, such as typed characters
appearing on a screen, mouse movements in a graphical user interface, or an action
effect in a real time network computer game. Such applications require response times
to be on the order of 100-200msec for best user-perceived quality [206]. In general,
currently available applications of this sort typically have low bandwidth requirements.
Indeed, large bandwidth requirements would have prevented their deployment over
slow speed access links which, until recently, limited the Internet connection bandwidth
available to users. One notable exception is the remote graphical desktop access,
e.g., the UNIX X Windows system, which generates traffic at relatively large rates,
and practically has limited applicability beyond well-provisioned LANs and campus
networks [145]. The traffic from such applications needs to be compressed (at the
application or lower levels) if it were to be sent over wide area network (WAN) links.
As faster user access links become available, widespread deployment of these and new,

comparably demanding, applications will be possible.

Medium These applications involve continuous user attention and therefore require low
transaction time (in the order of a few seconds). Example applications include WWW
browsing, chat, instant messaging, and urgent Email exchanges. The transfer sizes for
such applications are usually limited, which, given the desired transfer times, result in
moderate bandwidth requirements. However, a typical example of an application which
has similar delay requirement but perhaps higher bandwidth requirement is the transfer
of high resolution images in a medical setting (surgical operations). This particular

application requires large bandwidth resources to be satisfactorily operational.

Low Applications for which the transfer size is large (e.g., bulk transfer during system

backups) and which do not involve continuous user attention have low interactivity.

CHAPTER 1. INTRODUCTION 20

Such applications are mainly concerned with long term throughput rates, and have

loose delay requirements (e.g., tens of seconds or minutes).

In the following sections, we describe in detail the characteristics and requirements of one
representative application from each of the high interactivity, medium interactivity, and low
interactivity groups: respectively Telnet, WWW, and FTP. These applications, chosen for
their popularity, are traditional and well established, and therefore relatively well under-
stood. They will be used in the simulation studies presented in this dissertation.We go into

the details of their use of TCP, and the resulting performance considerations, in Chapter 2.

1.4.1 Telnet

We present here the characteristics of Telnet in terms of pattern and amount of generated

traffic, and its requirements in terms of delay and loss.

Characteristics

Telnet is a traditional remote login application, another popular version of which is secure
login ssh. Typical Telnet sessions consist of characters being typed by a user at a terminal
(client) and transmitted over the network to another machine (server), which echoes them
back to the user’s terminal. The packet stream thus generated consists of small datagrams
(typically less than 50 bytes). Occasionally, the results of commands typed by the user are
sent back by the server. This results in asymmetric traffic, with server to user terminal
traffic on average 20 times the user to server traffic [180].

Telnet packet inter-arrival times have been found to follow a heavy-tailed (Pareto) dis-
tribution, resulting in somewhat bursty traffic [181]. However, Telnet traffic is of relatively
low volume and therefore the variability it exhibits is practically not significant. Indeed,
the inter-packet time is normally limited by the typing speed of humans, which is generally

slower than 5 characters per second [120], giving a minimum 200 msec average inter-packet

CHAPTER 1. INTRODUCTION 21

time and a data rate lower than 2 Kbps when the worst case of 1 TCP/IP header (40 bytes)
per character is considered [120].

Several measurement studies of real network traces provide data about actual Telnet
usage patterns. Thus, Telnet connection arrivals were found to be well-modeled by Poisson
processes [181]. A connection typically lasts a few minutes, ranging between 1.5 and 50
minutes [47], with an average duration between 2 and 4 minutes {180]. The number of
bytes sent by both the Telnet client (originator) and server (responder) have heavy tailed
distributions. The first was found to follow a log-extreme distribution, while the second

follows a log-normal distribution, as indicated in Table 1.1 [180].

Requirements

As discussed above, Telnet is a highly interactive application and therefore has strict delay
requirements on individual packets. Subjective quality studies have found that echo delays
start to be noticeable when they exceed 100 msec, and in general, a delay of 200 msec is
the limit beyond which the user-perceived quality of the interactivity suffers. Longer delays
increase the probability of human errors, and eventually may render the application totally
unusable [120, 206]. Therefore, Telnet traffic is particularly sensitive to network queuing
delays and packet loss, since the TCP retransmission procedures usually introduce delays
that exceed the maximum acceptable echo delay. For this reason, Telnet packet loss needs

to be kept at a minimum for best user-perceived performance.

1.4.2 Web

The World Wide Web has been the primary force behind the rapid growth of the Internet
during the past 5 or so years. Today, it is the single most important network application, as
Web traffic currently constitutes the large majority (over 70%) of Internet backbone traffic
[216]. We therefore devote a larger section to this application.

HTTP, the protocol used to transport Web content, is a client-server or request-response

CHAPTER 1. INTRODUCTION 22

protocol. HTTP servers listen to a well-known port (TCP port 80), wait for connections from
clients and accept and service their requests. An HTTP client connects to a server, sends
requests for data (“resource” or “object”) and awaits the server’s reply. While currently
HTTP uses TCP, it may also use other protocols if desired [74]. HTTP allows users to
transfer various types of resources that constitute Web pages, i.e. HTML documents, as
well as images and other multimedia files “embedded” in the HTML files.

In addition to the HTTP request methods and response status codes and data, HTTP
request and response messages contain other useful MIME-like information*. Thus, an
HTTP request contains a request modifier, client information and possibly body content.
Similarly, server responses carry meta-information about the server and the data, in addition
to the data entity itself, allowing it to be correctly processed at the client end [74].

Two main versions of the HTTP protocol, known as HTTP/1.0 and HTTP/1.1, currently
coexist in the Internet [34, 74]. HTTP/1.1 specifies requirements for client, servers and
proxies and clarifies some of the HTTP/1.0 specification, in particular regarding security,
content negotiation and the use of hierarchical proxies and caching. It also adds support for
allowing one server to host several domains, limiting the use of [P addresses®. An important
change provides means for clients to request a part of a resource (a number of bytes). This
capability, called “range request”, has many uses, such as resuming interrupted transfers and
downloading image (bounding box) information for early page layout purposes. However, for
our purposes, more relevant are the changes pertaining to the use of the transport protocol,

which are discussed in Chapter 2.

*Multipurpose Internet Mail Extensions, or MIME, redefine the format of messages to allow for textual
email header and bodies in character sets other than US-ASCII, an extensible set of different formats for
non-textual email bodies, and multi-part email bodies [90].

SUnfortunately, such a server cannot support HTTP/1.0 clients, and therefore the effectiveness of this
change is limited, and depends on HTTP/1.1’s deployment [136].

CHAPTER 1. INTRODUCTION 23

Characteristics

Web traffic is closely tied to the content of Web pages, which varies as new Web page design
tools and styles, types of content and content encoding schemes are introduced [91].

Trace studies of HTTP/1.0 traffic such as [102, 146], have shown that most request
sizes are smaller than 500 bytes, and therefore fit in a typical size TCP segment (about
500 bytes)®. On the other hand, the mean size of a reply (carrying one component of a
page) is typically between 10,000 and 20,000 bytes, and the median ranges between 1,000
and 2,000 bytes [160]. This relatively early study found that most Web pages contain fewer
than 3 in-lined files, have an average size smaller than 32KB. and 90% of them are smaller
than about 200KB [146]. In a summary of Web studies [192|, an average HTML file size of
about 5KB, with a median of 2KB, and an average image size of 14KB are listed. These
figures are probably increasing as the network infrastructure improves and users are able
to download larger files. In a recent measurement study of popular Web sites [153], the
number of embedded objects was found to vary for different types of sites (e.g.. E-commerce
sites have more embedded objects than other popular sites), and gives larger numbers than
earlier studies (mean number between 11 and 15, median between 7 and 17). In fact, this
growth trend in the number of embedded objects was actually noticeable over the 4-month
period where measurements were collected in the same study.

As previously mentioned, HTTP is not only used to transfer Web pages. Indeed, mea-
surement studies, such as [59], confirm what most Internet users know, that is, HTTP is also
used to transfer large text documents and multimedia (audio and in particular video) files,
the reason behind the large transfer sizes that can be observed [59, 146, 192] report maximum
transfer sizes exceeding 1MB). In this usage, HTTP often represents a more convenient, and
often better performing alternative to FTP.

The numbers quoted above are characteristic of a heavy tailed distribution of transfer

SModern browsers do not generate requests which do not fit in one default-size segment (536 bytes), for
efficiency reasons {102}.

CHAPTER 1. INTRODUCTION 24

sizes, a fact that is confirmed by a trace study of Web client logs taken during 4 busy
hours ([59]). This study also shows that Web traffic may exhibit long-range dependence
(self similarity) when the network load is high enough, and that self-similarity gets more
pronounced as the aggregate traffic level increases. Nevertheless, the distribution of Web
file sizes was found to be less heavy-tailed than that of general (UNIX) file systems [39].

A backbone traffic measurement study has shown that Web clients and servers have
similar packet count and flow count fractions of the total, which is expected given the
request-response nature of Web transactions, and the presence of an ACK for each segment
sent in either way. In contrast, the byte count is found to be heavily asymmetric, with server
generated byte count about 9 times larger [216]. This corresponds well to intuition, since
client messages consist of short requests or empty acknowledgments, while server messages
consist of relatively large responses. Typical flow durations were observed to be 10 to 15
seconds. Finally, an observation common to all studies is a pronounced daily cycles of traffic
loads, corresponding to peek usage during the day and low usage at night.

The median user think time, which is the time between two different page accesses. was
found to be 10-15 seconds [146]. Moreover, users tend to spend a short time at one server
when browsing: the measurement study in [146| found that users view 4 pages on average
on each server, with a median of 2, while [102] cites 3 documents per user from server side
traces. Clicking the “Back” button on the browser causes client log traces to show double

these figures, with the difference served from the client’s cache.

Requirements

Low page download latency is the main requirement for Web applications. Human factors
studies report that the performance rating is considered to be very good for download times
below 5 seconds. Download times between 5 and 10 seconds may be acceptable, whereas
times larger than 10 seconds give low performance ratings [36, 40, 160]. In addition, since

users highly value predictable performance, the variance of the page downloads also needs

CHAPTER 1. INTRODUCTION 25

to be small.

It is possible to significantly improve user-perceived performance of Web browsing by
insuring that some form of early feedback for a transaction is received within a few seconds,
or that some components of a Web page, such as text, be displayed while waiting for the
remaining components [36, 40, 160]. The first technique is part of a set of techniques that
can be implemented in Web site design. The second technique is known as “incremental
loading” of Web pages, where the page layout is produced and displayed before the whole
page is received. It can make use of the “range request” introduced in the new HTTP/1.1
standard, to get embedded object information (typically found at the beginning of a file)
for each object in a page in order to produce an accurate layout as early as possible. Note
that some browsers do not wait for bounding box information for all embedded files, rather
they display the HTML document as soon as it is received and alter the layout as more

information is received.

1.4.3 FTP

Similarly to Telnet and HTTP, FTP follows the client-server model of operation [191].
Within an FTP sessions, two types of FTP connections are established between a client
and a server: control and data. An FTP control connection is setup by the FTP client
(to server port 21) and is used to send commands to the FTP server, and to return cor-
responding status messages. Commands consist of short ASCII strings which specify the
parameters for the data connections (data port, transfer mode etc...) and the nature of file
system operation (store, retrieve, append, delete etc...). Control connections are essentially
Telnet connections, since they use a subset of the Telnet protocol. In response to commands
sent on the control connections, FTP data connections are established to perform the data
transfer in either way, client to server and server to client. Data connections are setup by

the server on port 20 and connect to the data port (at the user side) specified by the client

in the FTP command.

CHAPTER 1. INTRODUCTION 26

Characteristics

Measurement studies have shown that FTP control connection (i.e. session) arrivals are
well modeled by a Poisson process [180, 181| This characteristic is shared by Telnet session
arrivals, presumably because such sessions are in the large part human initiated. On the
other hand, the same studies have shown that FTP data connection arrivals are not well
modeled by a Poisson process. Rather, they follow a heavier tailed distribution (log-normal).
It has thus been observed that data connections tend to occur in bursts, reflecting closely
separated operations, such as directory listings followed by a transfer, or multiple transfers
generated by a multiple get “mget” command [180, 181].

Most importantly, the amount of data transferred in an FTP data connection as well
as in an FTP session (consisting of several successive individual data connections between
two hosts) follows a heavy tailed distribution. Moreover, the tail of the distribution for
the amount of bytes transferred per burst is heavier than that of bytes transferred per
connection, indicating that very few bursts account for most FTP traffic. This can partly
be explained by the distribution of file sizes in file systems, where it has also been shown
that a few percent of the files hold the large majority of bytes. In a measurement study
conducted in 1997, it was found that typical FTP flows on a backbone link last from 20 to 500
seconds, transferring an average of 200KB [216]. The observed network characteristics of file
transfer applications evolve as new applications and content become popular. In particular,
the recent popularity in applications involving audio (e.g., mp3) and video (e.g., mpeg and
avi) and the associated surge in file exchanges, is reflected in recent network measurements
on backbone links, which show larger mean transfer sizes, and corresponding shift in the
transfer size distribution [92].

CHAPTER 1. INTRODUCTION 27

Requirements

FTP control connections, which share the characteristics of Telnet connections, also have
similar requirements. The status for typed commands (e.g., transfer initiated, list of remote
directory content etc...) needs to be promptly returned to the user. On the other hand,
the transfers themselves (i.e. data connections), have significantly different requirements. In
contrast to Telnet, the transfer delay of individual packets is not a critical parameter, but the
total file transfer time is. Since the transfer times vary depending on the file size, users would
be willing to wait accordingly. As discussed in Section 1.3, a reasonably accurate estimate
of the completion time might suffice in this case. Furthermore, based on the observations
in Section 1.3, it might be argued that the transfer rate should not show large variations
throughout the lifetime of a transfer. Such variations would affect the expected completion
time, and render the progress feedback ineffective.

In general, the heavy tailed distribution of transfer sizes, whether for HTTP or FTP, and
the resulting self similar traffic render the sizing of network buffers and the provisioning of
link resources for avoiding loss a difficult task. Indeed, increasing buffer sizes results in large
queuing delays, while sizing links well above the average rate results in low link utilization.
We show in this dissertation that packet loss can significantly degrade the performance of
interactive TCP applications. For these reasons, techniques for reducing the impact of packet
loss on the user-perceived performance of applications are needed, a subject we address in

Chapter 4.

1.5 Multimedia Applications

In contrast to data applications, perhaps the most defining characteristic of real-time mul-
timedia (audio and video) applications is that they do not require 100% reliability. Indeed,
limitations in the human sensory system, and techniques for error control and loss conceal-

ment allow good user perceived quality to be obtained, depending on the encoding used,

CHAPTER 1. INTRODUCTION 28

even when packet loss is in the order of a few percentage points [117, 132]. On the other
hand, these applications typically have tight delay requirements, therefore precluding the
use of TCP as a transport protocol. Instead, most multimedia applications use UDP, and as
a result do not implement congestion control mechanisms. However, the lack of such mech-
anisms has significant consequences on the network, and has motivated a large number of
studies, which have proposed mechanisms that are appropriate for multimedia applications,
including layering {22, 132, TCP-like congestion control mechanisms [87], and feedback
mechanisms which modify the encoding at the source [94]. In this dissertation, we consider
the interaction of TCP and UDP traffic in Chapter 5.

In this section, we first discuss the characteristics and requirements of audio applications,

then those of video applications.

1.5.1 Audio Applications

There are a number of different network audio applications with different characteristics and
requirements. Popular applications include audio broadcasting (Internet radio) and music
on demand. However, perhaps the single most important audio application is telephony,
considering the huge potential market which it represents, with close to $300 billion of
revenues in the U.S. alone (2000 figures, {215]). Thus, voice is the main focus of our discussion
here.

As the Internet infrastructure expanded and its reach broadened in the past few years,
voice over IP has gained a lot of momentum. The amount of voice traffic in minutes being
carried over the Internet is growing at an astonishing pace, from 8 million minutes in 1997,
it was close to 10 billion in 2001 [215]. However, the quality of voice over the Internet still
does not match that over the Public Switched Telephone Network (PSTN), mainly due to
congestion induced packet delays and drops [148]. We first discuss the characteristics of

voice traffic, then we discuss its requirements.

CHAPTER 1. INTRODUCTION 29

Characteristics

Encoded voice traffic is of relatively low volume. The most basic encoder, G.711 [114], and
its variants (e.g., G.726 [115]) use pulse code modulation. In G.711, an 8 bit sample is taken
of the voice signal every 125 microseconds, to generate a 64Kbps stream. Newer encoders,
such as G.723 and G.729 use more sophisticated encoding schemes to reduce the stream
rate to 5.33Kbps and 8Kbps respectively, at the expense of larger encoding delay and lower
quality [116]. Furthermore, since voice conversations consist of a sequence of talk-spurts and
silence periods (with silence accounting for about 60% of the time [46]), a significant rate
reduction is obtained though the suppression of samples corresponding to silence. Silence
suppression does increase the variability of the generated traffic, however, its impact on the
network is limited owing to the low volume of voice streams. Indeed, when voice samples
are packetized into [P datagrams (with 1 or more samples per packet), adding the necessary
headers (e.g, Real-time Transport Protocol RTP, UDP and IP), the generated packet stream
rates remain in the order of a few tens of Kbps. In contrast, streaming audio applications
such as Internet radio and music on demand typically require larger data rate to encode the

audio information (e.g., 20Kbps or 64Kbps Real Audio, or 128Kbps streaming mp3).

Requirements

Telephony is a highly interactive application and has particularly stringent delay require-
ments. Users have grown accustomed to PSTN quality or “Toll Quality”, developed over the
last century. End-to-end delays need to be below 150msec, and jitter must be limited to
ensure smooth playback at the receiver. Streaming audio applications, on the other hand,
do not have these strict interactivity requirements, and can use a large playout buffer (e.g.,
requiring a few seconds of buffering delay at startup) to smooth out delay jitter and insure
good quality playback.

In addition, voice packet loss must be low enough to preserve the intelligibility of speech.

CHAPTER 1. INTRODUCTION 30

Many studies have been conducted to investigate the effect of different patterns of loss on
the subjective quality of voice conversations. These have shown that loss rates up to 5%
can be tolerated, depending on the encoding scheme, and the task (e.g., business discussion
versus casual conversation).

A modeling and simulation study of voice delays in the network has shown that voice traf-
fic needs to be separated in its own queue in the network, which is serviced with highest pri-
ority [129]. A recent assessment study of VoIP quality over the (reputedly over-provisioned)
Internet backbone, using real delay and loss measurements, confirms that voice cannot be
supported in the current “best effort” Internet. Voice quality was found to be unacceptable
during frequent periods of bursty loss and large delays in the network [148]. We therefore
assume that, in the future, voice will be separated in its own queue, and we focus on data

and video traffic in this work.

1.5.2 Video Applications

A number of different video applications exist, such as video on demand, video-conferencing

and broadcasting, each having different characteristics and requirements.

Characteristics

Video traffic characteristics are closely tied to the video content, the compression scheme
and the video encoding control scheme used. In general, video content that exhibits fast
changes between different picture frames (e.g., explosions, fast moving vehicles) requires
more data to be represented than slowly changing content (e.g., talking heads). Different
video compression schemes, such as MPEG-1, MPEG-2, H.261 and H.263 have different
processing requirements and result in widely different video quality and data rate for the
same content. Thus, the compression scheme that best fits a particular application depends
on the usage and purpose of the application, and on the network and device resources

available. Finally, the encoding control scheme (constant bit rate CBR, variable bit rate

CHAPTER 1. INTRODUCTION 31

VBR, constant quality variable bit rate CQ-VBR [62]) determines the actual video traffic
rate for a given content and compression scheme. In general, VBR compression was shown
to provide better video quality than CBR, for the same average rate, at the expense of
increased burstiness [218]. Indeed, measurement results have shown that video traffic, like

TCP traffic, might exhibit self similar properties [228].

Requirements

Video delay requirements depend on the degree of interactivity of the application. For video
on demand and video broadcasting, the delays can be in the order of a second or more
(faster interactivity with the stream in video on demand, such as fast forward etc... might
require shorter delays). On the other hand, video-conferencing, like voice, requires end-to-
end delays including video encoding and decoding, and delays in the network, to be in the
order of 150 to 200msec for good quality.

Compressed video quality is highly sensitive to the loss of critical information. such as
low frequency coefficients and motion vectors, while the loss of other information may have
minimal impact on quality. For this reason, video traffic lends itself particularly well to
layering, whereby a hierarchy of importance of video data is formed (e.g., a base layer plus
one or more enhancement layers). With layering, quality degradation remains linear with the
loss of information in the enhancement layer, and the loss of large amounts of enhancement
layer data may still result in acceptable performance. Layering can be performed in different
ways (standardized in MPEG-2), such as data partitioning, SNR scalability and spatial
scalability. By giving the different layers different priorities in the network, it is possible
to avoid the loss of base layer information during network congestion, thereby reducing
its impact on user-perceived quality [132]. We show how appropriately layered video and

marked TCP traffic can be supported in the network in Chapter 5.

CHAPTER 1. INTRODUCTION 32

1.6 Service Differentiation

The integrated support of the various data and multimedia applications in one network, and
in the Internet in particular, has many advantages. First, physical integration [213] reduces
the costs associated with the installation, operation and management. Second, the use of
one network allows functional integration [213}, enabling richer applications to be deployed,
such as collaborative workspaces which integrate voice, video and whiteboard or other data
applications. Finally, the flexibility of the Internet protocols, their widespread deployment,
and the experience gained with them make the Internet a prime candidate for the role of
integrated network. For these reasons, the area of integrated services in the Internet has
received a lot of attention, particularly since the early 1990s, when the packet switched
nature of such a network was agreed upon.

Given the widely different characteristics and requirements of the individual applications,
providing the required quality of service to all applications necessitates support from the
underlying network architecture. Quality of service benefits from advances in technologies,
as well as from service differentiation. Increases in network link speeds and nodes’ switching
capabilities enable more bandwidth to be available end-to-end. While some major backbone
ISPs over-provision their networks to the point where all packets see negligible loss and delay,
other areas of the Internet are typically not able to provide such quality levels. For example,
at network peering points, traffic from multiple service providers aggregates in unpredictable
and uncontrollable ways, and may exceed the local resources, or the capabilities of some
networks. Furthermore, for some access technologies, such as wireless, bandwidth is limited
by the underlying communication medium. In these places, service differentiation is needed
in order to adequately support the most demanding applications. Several initiatives for
providing service differentiation and quality of service in networks have seen the light over
the past decade. We review the main architectures, starting with the Asynchronous Transfer

Mode (ATM), then focusing on the standards developed by the Internet Engineering Task

CHAPTER 1. INTRODUCTION 33

Force (IETF), namely IntServ and DiffServ.

1.6.1 ATM

As computer communications picked up pace during the 1980s, and due to the difference
in characteristics between data and voice communications, the International Telecommuni-
cations Union (ITU) saw the need to build a single integrated network (named Broadband
Integrated Services Digital Network or B-ISDN). This network would benefit from the large
data rate made possible by fiber optic links, and avoid the need for multiple specialized net-
works [23]. In order to efficiently support the multiple traffic types, the B-ISDN design used
a packet switched architecture. Initially meant to provide switching in the core of ITU’s
B-ISDN, the Asynchronous Transfer Mode allows the efficient usage of resources through
the asynchronous multiplexing of connections belonging to the different traffic types. While
it was first destined to be a WAN technology, ATM was soon thought of as a replacement
to the TCP/IP architecture for end-to-end communications (e.g., “ATM to the desktop”).

In order to provide guaranteed quality of service, the ATM architecture is based on the
concept of virtual circuits (VC). Similarly to circuit switching, VC switching involves the
setup of a connection between two endpoints before any data is exchanged. The connection
setup involves the negotiation of the quality of service for the call. After the circuit is
established, all subsequent communication happens along the path thus formed, and uses
small fixed-size (53 bytes) packets or “cells”. The cells need only carry a short identifier to
indicate the VC to which they belong on each link. The identifier need not be the same on
all links, and switching tables are used at each node to map the cell’s incoming VC number
on a port to the cell’s outgoing VC number on the next hop port. ATM insures quality
of service by using admission control and allocating the necessary resources at all nodes
and links along the path of a flow, while the use of asynchronous cell switching retains the
statistical multiplexing benefits of packet switching for bursty traffic.

Although the benefits of ATM’s design are attractive at first sight, its use in practice

CHAPTER 1. INTRODUCTION 34

suffers from several drawbacks. First, the small cell size (chosen to reduce the impact
of formation time on delay sensitive voice traffic) results in large header overhead. With
the large increases in switching speeds achieved in conventional IP routers, the benefits of
ATM’s simpler switching and the speed headstart it once enjoyed have been lost, making
the header overhead loss more evident. Second, the need for connection setup and traffic
parameter negotiation adds complexity and startup overhead, which for bursty traffic may be
prohibitive and affect scalability. Third, the use of ATM addresses end-to-end is challenging,
since it requires all devices to convert to ATM. This conversion had become unlikely by the
time ATM was available, due to the widespread use of IP. Finally, simpler technologies may

be able to provide similar quality of service, at reduced costs.

1.6.2 Integrated Services

The [ntegrated Services (IntServ) framework represents the first attempt by the IETF at
standardizing service differentiation mechanisms in the Internet [204]. Motivated by similar
concerns as the ITU, and perhaps to provide comparable mechanisms to those of ATM,
the IETF attempted with IntServ to provide quality of service at the individual IP flow
level. In IntServ, a flow requiring a certain quality of service needs to request it from
the network. It does so by sending a reservation messages which carries the flow’s QoS
specification parameters (i.e., flow characteristics and requested service level), similarly to
VC establishment in ATM. The reservation is processed at routers along the path to the
destination. If the request is acceptable by all the traversed routers, the flow is admitted
and flow state is created at the routers to reserve the necessary buffering and bandwidth
resources. A “soft state” signaling mechanism, the Resource ReSerVation Protocol (RSVP),
was designed for this purpose.

Clearly, the IntServ architecture involves considerable per-flow processing and requires
per-flow state to be kept in routers. This is particularly costly in the context of the Internet,

where the majority of flows are typically of short duration, and the overhead in admission

CHAPTER 1. INTRODUCTION 35

Metering
Policing (marking
Charging,

Priority
Dropping

.....

Figure 1.3: DiffServ architecture components.

control and reservation would be prohibitive. This significantly limits the scalability of the
mechanisms, particularly in the core of the network, where the number of active flows can

be very large.

1.6.3 Differentiated Services

The IntServ architecture’s lack of scalability and its resulting failure to gain acceptance,
prompted the IETF to put forward a more scalable alternative, called Differentiated Services
or DiffServ architecture, which has emerged as a strong candidate for deployment [37].
DiffServ trades off strong quality of service guarantees with simplicity, and is scalable because
no flow state is kept in core routers. Figure 1.3 shows the main components of the DiffServ

framework. The main ideas behind this architecture are the following:

1. The Internet is to be viewed as a set of interconnected, independently managed Diff-

Serv domains.

2. Each packet carries a priority marking, called DiffServ codepoint (DSCP), encoded in
the IP header (in place of the original Type of Service byte). Packets carrying the
same DSCP belong to the same behavior aggregate (BA) and expect to receive the

CHAPTER 1. INTRODUCTION 36

same treatment in the network. Packets may be marked at the source, or by network

devices (e.g., routers).

3. Inside the network core, routers treat packet aggregates using a set of simple, state-
less buffer management mechanisms, called Per Hop Behaviors (PHBs). Per Domain
Behaviors (PDB) describe the quality of service obtained through the succession of

individual PHBs throughout a network domain.

4. At the network edge, in addition to the mechanisms operating on traffic aggregates,
per-flow mechanisms, such as admission control, monitoring, marking, charging and

policing are used.

5. The appropriate quality of service is obtained through the PHB treatment in associ-
ation with adequate provisioning in the network. Service Level Agreements (SLAs)
govern the exchanges between users and network service providers and between ser-
vice providers. SLAs specify the type and amount of traffic allowed, and the quality
of service it should expect in the network domain, among others. Admission control

at the network edges is used to supplement the provisioning mechanisms.

Thus, the bulk of the complexity is moved to the edges, where the reduced number of flows
may allow fine-grained treatment of packets, at individual flow level. To supplement the
best effort service, two PHB's have been standardized, called Expedited Forwarding (EF)

and Assured Forwarding (AF) services.

Expedited Forwarding

The Expedited Forwarding (EF) PHB defines a traffic class with a strictly limited input
rate, and with sufficient allocated resources to provide minimal queuing delay and no loss
(RFC2598, [124]). RFC2598 proposes giving EF traffic strict priority over all other traffic,

which, given its limited amount, should not lead to starvation of lower priority traffic. This

CHAPTER 1. INTRODUCTION 37

service is intended for low delay, low bandwidth traffic, such as voice communications.

Assured Forwarding PHB

In this dissertation we are interested in applications with larger bandwidth requirements than
voice, and which would likely use the Assured Forwarding service. The Assured Forwarding
(AF) PHB defines 4 classes of service, each allowing 3 different packet drop priorities. Each
class is mapped to a separate queue in routers, and the queues are serviced with a scheduler
that can allocate a configured service rate to each, e.g. a weighted round robin scheduler
[103]. The AF specification does not mandate a specific use for the 3 drop priorities that are
available in each AF queue. In fact, these can be used in different ways, to achieve a variety
of different goals. For example, most AF-related work has focused on guaranteeing a certain
throughput for individual TCP connections. We go into more detail of prior work in the
following section. Other usages would be to provide differentiation among different users or
applications, or to allow graceful quality degradation during congestion periods. We show,
in Chapters 4 and 5, how the appropriate marking of TCP and video packets, in association

with the 3 drop priorities, can be used to achieve these goals.

1.7 Prior Work on Supporting TCP Applications

We present in this section related work on the support of TCP applications in the Internet
using the DiffServ Assured Forwarding mechanisms.

Current proposals for the use of the AF service are based on the “Allocated Capacity”
framework, also known as Random Early Detection (RED) with IN and OUT or RIO [58],
which is the precursor of the AF service. The RIO proposal and subsequent work focuses on
TCP traffic, and aims to guarantee a minimal “allocated” throughput for each TCP connec-

tion, and to achieve fairness in the distribution of excess bandwidth among the connections

sharing the link.

CHAPTER 1. INTRODUCTION 38

More precisely, the RIO framework is based on the following paradigm. Users declare
a desired rate for each TCP connection. When the connection is active, packets that are
generated are passed through a (token bucket) marker at the edge of the network. The
marker labels the packets that are sent within the declared rate as IN, while the others are
labeled as OUT. Internal to the network, nodes give preferential treatment to IN packets,
by dropping OUT packets earlier in times of congestion. Within the DiffServ framework,
the use of the third drop priority available has been subject of deliberations. While early
studies stated that 2 priorities are sufficient [96], further consideration showed the need for
three, in order to control UDP traffic [64, 97].

Besides the need for some form of end-to-end per-connection admission control, this
approach suffers from several problems.

A recent study raises serious doubts on the feasibility of such an approach, given the
dependence of TCP’s performance on many factors, the difficulties involved in achieving the
stated goals and the complexity of provisioning for such services [167]. Indeed, most studies
which did not limit themselves to uniform link speeds and round trip times have shown that
the allocated throughput is not achievable in all situations [67, 108, 200]. Thus, it is was
found to be doubtful that TCP throughput can be controlled through token bucket marking
and dropping [196]. It was thereafter suggested that the allocation be made for an aggregate
of connections, in the hope that the mix of path characteristics for the different connections
would allow the aggregate to achieve the reserved rate [231]. This proposal could be more
practical, since monitoring and marking functions would be needed on a per-user rather than
per-connection basis. However, it does not allow control on the quality of service received
by individual connections within the aggregate. As we show in Chapter 4, the application-
level performance for this approach is no better than without service differentiation. Other
proposals included changes to the TCP congestion control mechanism, such as using two

different congestion windows or having different reactions depending on the marking of the

lost packet [71, 230|.

CHAPTER 1. INTRODUCTION 39

Second, while it potentially introduces a useful service for some applications, such as
bulk data transfer, this approach does not address the needs of applications, such as the
Web, which use short connections and are the most prevalent in the Internet. These require
a fundamentally different type of service and have not been addressed in prior work on AF.

In Chapter 4, we propose and study mechanisms that are applicable to these applications.

1.8 Dissertation Contributions

In this dissertation we investigate the performance of data applications in different network
environments. We identify problems due to TCP’s reaction to packet loss, and propose
network assisted mechanisms for addressing them.

Given the predominance of TCP in the work presented in this dissertation, we provide
in Chapter 2 detailed background information on TCP, and describe how it is used by the
different data applications. We discuss the various implemented mechanisms for reliable
data delivery, flow control and congestion control. Since the congestion control mechanisms
determine TCP’s performance in the network, we place particular emphasis on these mech-
anisms, and present a survey of relevant work. We describe the various TCP versions and
discuss their performance in various network environments. In addition, we touch upon the
recent TCP modeling efforts and comment on the use of TCP in computer simulations.

In Chapter 3, we investigate the issues faced when high performance is needed by TCP
applications in a switched local area network. In this context, the low levels of aggregation,
burstiness of TCP traffic and large speed mismatches result in frequent instances of short
term congestion, and packet loss due to buffer overflow. We show how the performance of
TCP applications is affected by TCP’s congestion control mechanisms’ reaction to packet
loss. We use computer simulations to investigate the use of MAC layer flow control schemes
to eliminate packet loss in the LAN, and quantify the performance improvement made

possible in this context. Furthermore, we show the need for flow control actions to be

CHAPTER 1. INTRODUCTION 40

selective, i.e. based on destination MAC address and class of service information, suggesting
the need for such information to be included in the relevant [EEE standard.

In Chapter 4, we move to the context of the Internet at large. In this context, we focus on
the effects of congestion induced packet queuing and loss on the user perceived performance
of interactive TCP applications. Using accurate application models and large simulation
scenarios, we show how the delays of Telnet echoes, and the download times of Web pages
can become unacceptably large as a result of congestion. We study two different approaches
for improving their performance using service differentiation, in the form of multiple drop
priorities. First, preferential treatment is given to interactive applications in the network,
thereby reducing the packet loss rate they incur. Thus, highly interactive applications,
such as Telnet, would be given priority over interactive applications, such as Web transfers,
which in turn are given priority over non-interactive applications. We show that, by properly
classifying traffic based on the applications’ characteristics and requirements, user-perceived
quality can be significantly improved, albeit at the expense of low priority traffic. Thus, we
show how Telnet echoes can be reduced from several seconds to the level of one round trip
time, while page download times are decreased from more than 10 seconds to 3 seconds
or lower. The second approach is based on TCP connection state. By basing the priority
of packets on the TCP connection window, it automatically prioritizes short (interactive)
transfers. In addition, long transfers are given priority when they incur loss and reduce
their sending rate. This approach is shown to improve the user-perceived performance of
interactive transfers, without significantly affecting others.

In Chapter 5 we consider the future Internet, which is expected to support multimedia as
well as data applications. In this context, TCP traffic would have to share the network with
significantly larger amounts of UDP traffic than in today’s Internet. We perform a case study
using MPEG-2 compressed video to generate realistic UDP traffic. We first consider mixing
data and video traffic in drop tail queues, and show how the user-perceived performance of

both types of applications can be degraded as a result. We then demonstrate how the TCP

CHAPTER 1. INTRODUCTION 41

marking described above, along with appropriately layering the video traffic, can be used
in association with prioritized dropping in network queues to efficiently support both traffic
types. Finally, we discuss the benefits of separating the two traffic types, and show how the
de-coupling of packet loss rates incurred by the two traffic types at the different priorities
allows the most efficient support possible.

We conclude in Chapter 6 by summarizing the results and discussing areas of future

work.

CHAPTER 1. INTRODUCTION

42

Chapter 2

The Transmission Control Protocol

A sizable portion of this dissertation is devoted to the study of TCP applications in various
network environments. Key to this work is a detailed knowledge of TCP’s mechanisms,
which largely determine the network performance of data applications.

As attested by its predominance in the Internet, TCP has been a remarkably successful
design. It provides adequate performance to widely different applications in greatly varied
network environments. However, this has only been possible through continuous study,
improvements and modifications, making TCP one of the most active networking research
areas. In this chapter, we describe the various mechanisms for reliable data delivery and
congestion control implemented in TCP, discuss their evolution, and present a survey of the

main TCP-related research areas.

2.1 Introduction

The Internet is a large mesh of networks which implement the Internet Protocol (IP). The
Internet packet routing infrastructure consists of switches (routers) interconnected by “links”,
which could be as diverse as local area networks, long distance fiber optic cables, optical

networks, or wireless and satellite connections. When routers receive IP datagrams, they

43

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL +

examine the destination field in the datagrams’ IP header, and send them to what is, to the
best of their knowledge, the next hop toward the destination. Through such hop-by-hop
forwarding, datagrams sent by a source are delivered to the destination.

The packet delivery process in the Internet may fail for many reasons. For example,
routers may have incorrect or obsolete routing information. Packets may be dropped in
the network due to congestion or to bit errors caused by noise in the transmission medium,
or discarded at the destination hosts due to lack of buffer space. Furthermore, in order
to improve the efficiency of the Internet and its survivability, packets belonging to one
conversation may be routed on different paths in the network. This leads to the possibility
of out-of-order arrival at the destination. Finally, duplicate packets may appear due to bugs
in router software or retransmission from the sources. Thus, the packet delivery service in
the Internet does not give any guarantees to the sender.

Most applications, however, require reliable, in-order delivery of messages between two
endpoints. They also require flow control in order to pace the transfer rate when the re-
ceiver’s resources, such as processing power or buffer space, are not sufficient to handle the
traffic injected by the sender!. A possible approach to follow would be for each applica-
tion to implement the error detection and recovery mechanisms required for its operation.
However, given that these mechanisms are needed by many applications, the advantages of
a common protocol which provides this functionality are immediately apparent. Not only
would the availability of such a protocol ease the design and implementation of applications.
but it also allows the efficient multiplexing of datagrams received at a host to the appropriate
end-processes. In the current Internet architecture, this process-to-process communication
role is played by TCP.

TCP has two important functions. The first is to provide reliable data transfer to

! A loose convention exists in the literature which considers “flow control” to be related to the problem
of a fast sender overwhelming a slow receiver, and “congestion control” to be related to the problem of
(aggregate) demand exceeding the resources inside the network. The distinction is not always clear (e.g.,
flow control between neighboring switches can be considered a congestion control mechanism).

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 45

applications. The second is to perform congestion avoidance measures to protect the network

from chronic congestion. We discuss each of the two in turn below.

2.1.1 Process-to-Process Reliable Data Delivery

On top of the unreliable, connectionless [P service, TCP is a connection oriented protocol

which provides the following services to network applications:

1. Reliability. In the event of packet loss or bit errors, TCP insures that any lost or

corrupted data are retransmitted and received at the destination.

2. In-order delivery of bytes. TCP reorders data and eliminates duplicates at the receiving
end before delivering the data to the application process. The byte granularity provides
flexibility in handling data during transfers, while avoiding the complexity of dealing

with the finest granularity (i.e., bits).

3. Multiplezing. TCP allows the efficient multiplexing and demultiplexing of traffic from
different processes on one machine, by identifying each with a 2 byte integer number

(called TCP port).

4. Flow control. A TCP receiver can throttle a sender by specifying a limit on the amount

of data it can transmit.

TCP’s transport services are required by many popular Internet applications. Considering
the complexity of such a protocol (e.g., in the Linux kernel, TCP alone requires about 15,000
lines of code, and practically no implementation is bug free), implementing a comparable
protocol for each application would constitute a significant development overhead. Indeed,
the availability of a generic data transport protocol tested and debugged by many users over
several years has enabled the rapid deployment of new applications in the Internet (e.g., the

Web). We go into the details of TCP’s data delivery services in Sections 2.3 and 2.4.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 46

2.1.2 Congestion Avoidance and Control

In addition to the services provided to applications, a critical aspect of any transport protocol
is its behavior in the network. Indeed, the heterogeneity of the Internet creates network bot-
tlenecks along the paths of connections. Given the open access to the network, and without
rate control at the sources, the buffers at these bottlenecks fill up, leading to large queuing
delays and packet loss. Retransmission of lost data only aggravates the problem. Therefore,
mechanisms for sources to adapt to network congestion are needed. For this reason, TCP
includes adaptive congestion control mechanisms, which reaet to congestion indications (i.e.,
packet loss) by limiting the amount of data kept outstanding. These mechanisms allow TCP
to adapt to heterogeneous network environments, and have been instrumental in keeping the
Internet from sinking into congestion collapse. In fact, it is quite common for network man-
agers to setup firewalls that filter traffic from other protocols for fear of its effects on the
network.

Understanding TCP’s congestion control mechanisms is very important for two reasons.
First, they dictate the performance of data applications in various network environments.
Second, given TCP’s preponderance, they determine the characteristics of the aggregate
traffic in the Internet. For these reasons, TCP’s congestion control mechanisms have been
the subject of a large and diverse body of research studies, ranging from enhancements to
the mechanisms themselves to network measurements and traffic modeling. We describe

TCP’s congestion control mechanisms in detail in Section 2.6.

2.1.3 Goals of this Chapter
In this chapter, we have the following goals:
1. Give a succinct presentation of the different mechanisms implemented in TCP. Our

aim is to understand how they interact and what impact they have on application

performance.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 47

2. Trace the evolution of TCP and sort out the different versions to help understand its

current design.

3. Describe TCP's application interface, and how different applications use TCP. This

knowledge is crucial in understanding and improving TCP applications’ performance.

4. Survey the main research areas related to TCP: performance studies in various net-
work environments, network mechanisms targeted at TCP traffic, and efforts at TCP

modeling.

The rest of the chapter is organized as follows. In Section 2.2, we present a timeline of
TCP’s development, and discuss the important milestones. Section 2.3 is devoted to the
mechanisms that insure reliable data delivery. In Section 2.4, we present TCP's flow control
scheme. Section 2.5 describes the mechanisms used in TCP for limiting the number of small
packets sent, and improving transfer efficiency. Section 2.6 presents the congestion control
mechanisms that are implemented in TCP and describes their different versions. Then,
in Section 2.7, we present a literature survey on TCP’s performance in various network
environments. In Section 2.8, we discuss active queue management mechanisms aimed at
improving TCP’s performance in the network. Section 2.9 looks at TCP’s socket interface
and describes the way some popular data applications use TCP. Section 2.10 presents the
main results of TCP modeling efforts and discusses issues related to computer simulations

with TCP. Finally, we conclude in Section 2.11.

2.2 Timeline

In this section we give a timeline of milestones in the development of TCP over the 3 decades
of its existence. Most of these developments pertain to the congestion control mechanisms

and have resulted in the various TCP versions currently deployed.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 48

1974 - A Blueprint for the TCP/IP Architecture

The origin of the Transmission Control Protocol goes back to a proposal by Cerf and Kahn,
published in 1974 [51]. The main goal of TCP was to serve as a unified internetwork protocol,
which would allow computers on different types of networks to communicate and share
resources. The design specified that the network would use packet switching, the preferred
method for computer communications. Hosts would be given unique (Internet) addresses.
These addresses would be hierarchically organized, with each divided into an 8-bit network
identifier and a 16-bit host identifier. Furthermore, the original proposal defined the role of
specialized packet switches, called “gateways”, which handle the interface between diferent
networks. In order to keep this interface as simple as possible, all hosts would implement a
unified transport protocol, which relieves the gateways from the task of translating between
different such protocols. Then, the role of the gateways becomes to simply figure out the
next hop on the path of a packet, encapsulate and send it according to each network’s packet
switching techniques. In addition, if need be, the gateways would fragment a large packet
into multiple smaller ones, which are reassembled at the destination host.

In addition to the functionalities described above, the protocol specified mechanisms for
reliable data delivery of a byte stream. These involved setting up a connection between the
communicating endpoints, and using a sliding window mechanism to re-order data at the
receiver and eliminate duplicates, and acknowledgments and timeout-based retransmissions
to recover lost packets. These mechanisms have seen little change since, and are described

in more detail in Section 2.3.

1980 - First TCP Standard (RFC761)

In the years separating the first sketch of TCP’s mechanisms and the first draft standard,
the benefits of a simple packet delivery service, which does not necessarily provide reliability
became evident. This led to the split of the mechanisms specified for the original TCP into [P

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 49

o

15 16 31

SOURCE PORT DESTINATION PORT

SEQUENCE NUMBER

ACKNOWLEDGMENT NUMBER

AIS|F

siyly WINDOW
TIN|IN

CHECKSUM URGENT POINTER

UIA
orrser | RESERVED |afc

IV

l‘_.. 20 octets _.l

OPTIONS + PADDING

Figure 2.1: TCP header format. The data offset field indicates the length of the header,
which depends on the presence of options, in multiples of 4 bytes.

and TCP as we know them today. Thus, IP inherited the hierarchical address structure (with
an increased address length from the original 24 bits to 32 bits), the routing functionality
and the fragmentation mechanism. On the other hand, the current TCP implements the
original mechanisms for full-duplex, reliable, process-to-process byte delivery. Although
implementing the fragmentation and reassembly functions at the IP layer removed one of the
main reasons for TCP’s byte level granularity, this aspect was kept in the new architecture.

The specification of the current TCP first appeared in RFC761 (1980, [189]), and was
finalized in RFC793 (1981, [190]). The standard TCP header is shown in Fig. 2.1. The most
notable change in RFC793 concerns a header flag (called End of Message or End of Letter)
in the original TCP proposal and RFC761. This flag denoted the end of an application-level
message. The use of the EOL flag meant that data from different messages could not be
sent in the same TCP packet (called segment). RFC793 replaces the EOL by a weakened
form, called the PUSH flag, which provides a loose indication of where the boundaries of
application-level entities are in the bit-stream (see Section 2.9) [57|. In addition, the standard
adds an adaptive round trip time estimation and retransmit timeout computation. Finally,
it introduces a third message to connection setup, now called “three-way handshake”, which
provides an indication that the connection is established in both directions. In the original

proposal, data flow was required before both endpoints knew whether the connection is

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 30

established or not.

1982/1984 Problems with Small Packets

A problem encountered with early implementations was the inefficiency resulting from small
packets. These were the result of simplistic implementations ignoring common sense rules,
and led to the addition of three mechanisms to TCP. The first, called Silly Window Syndrome
Avoidance, is implemented at both sender and receiver ends to prevent unreasonably small
window advertisements from being declared or used. The second, called Delayed ACKSs,
holds back the generation of acknowledgments with the goal of coalescing acknowledgment
information, window declaration, and new data in one segment. This mechanism is now
implemented in most TCP receivers. The third, called Nagle’s algorithm, prevents senders
from placing more than one small packet in the network at any one time. We go into more

details concerning these mechanisms in Section 2.5.

1986/1988 - Tahoe Congestion Control

While the three mechanisms described above- corrected the inefficiency resulting from small
packets, they were only able to delay the inevitable: network overload caused by senders
placing too much data in the network, and not reacting to the resulting congestion. The
problem is compounded by a crude “go back N” retransmission mechanism, along with
an inappropriate retransmit timer calculation. This situation soon leads to “congestion
collapse”, a state where the network is in livelock, performing very little useful work [163].
Several such incidents occurred in the mid-1980s. The severity of the problem lead to the
addition of congestion control mechanisms to TCP in 1987 [119]. These consider packet loss
as an indication of congestion, and reduce TCP’s sending rate when packet loss is detected.
The congestion control mechanisms were first described in a paper by Jacobson and Karels
{119]. This version of TCP’s congestion control mechanisms has become known as Tahoe

TCP, because they appeared in Berkeley’s Software Distribution UNIX, release 4.3BSD

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 51

Tahoe. We go into the details of the congestion control mechanisms in Section 2.6.

1990 - Reno Congestion Control

The first modification to Tahoe’s congestion control mechanisms made the distinction be-
tween loss detected through a retransmit timeout and loss detected through the reception
of acknowledgments carrying the same sequence number. In particular, TCP’s throughput
reduction in reaction to the latter was made less drastic. The change, described by Jacobson
in an email to the IETF end-to-end interest list [121], was implemented in the “Reno” version

of TCP, released in 4.3BSD Reno.

1994 - ECN and Vegas Congestion Control

In 1994, Brakmo and Peterson proposed a new set of techniques for congestion control,
leading to another TCP version, called Vegas [45].

In [79], Floyd studies the benefits of implementing Explicit Congestion Notification in the
network, whereby routers mark rather than drop packets during congestion, and proposes
modifications to TCP for using such indications. [n 1999, a formal proposal for adding ECN
to IP first appeared in RFC2481 (193], and is currently a proposed standard in RFC3168
[194].)

1995/1996 - NewReno Congestion Control and SACK Options

In a study of Reno’s performance, Hoe identified problems with its performance when mul-
tiple packets are lost in a window [106]. This study lead to modifications in the behavior of
Reno, which were implemented in the NewReno version of TCP congestion control.
Mathis et al. investigated the use of selective acknowledgments (SACK), which provide
information about non-contiguous blocks of data received at the destination. This infor-

mation can be used to significantly improve TCP’s performance when multiple packets are

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 52

lost within one window [66]. The modifications required for the addition of SACK to TCP
appeared as a proposed standard in RFC2018 [150].

1997 - First Congestion Control Standard

TCP’s congestion control mechanisms were finally standardized in RFC2001 and updated in
1999 in RFC2581 [9, 212]. The standard version of TCP’s congestion control is Reno. The
NewReno modifications appeared simultaneously with the latest standard as an experimental
RFC (RFC2582, [85]). In terms of deployed implementations, Reno has been the most widely
nsed version of TCP until recently, and is being steadily replaced by NewReno and TCP
with SACK. However, a non-negligible portion of Internet hosts and servers still use the

Tahoe version [17, 177].

2.3 Reliable Data Delivery

In this section, we describe the mechanisms which insure reliable in-order transfer of data
between source and destination, and the multiplexing of traffic to different processes. A
conceptual system view of the mechanisms involved in data delivery and congestion control
is depicted in Fig. 2.2. The different components will be described in detail in the remainder
of this chapter.

TCP needs to address the following three issues in order to achieve reliable transfer in

the Internet:
1. Establishment of connection state at the communicating endpoints
2. Data duplication and re-ordering

3. Data loss

The first step in providing reliable in-order data delivery between two hosts is the setup of

connection state at each of the endpoints, as described in the following section.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 53

i L
Send Receive Empry buffer
Buffer Buffer sapce is semt
in ACKs as
: i 4
Delayed ACK,
o o rSWS Avoidance [
: Y
v ' Immediate ACK '» P
RTT smlinq. . Retr ie
Timer : Queue :
Computation
ACKs Daia Sexments ACKs Data Sexments
Y Y

Figure 2.2: A system view of TCP’s mechanisms for reliable data delivery and congestion
control.

2.3.1 Connection Establishment and Multiplexing

TCP connection setup requires an exchange of synchronization messages, known as the
three-way handshake (see Figure 2.3). The main purpose of this exchange is to prevent
old connection initializations and data packets from causing confusion. In addition, the
endpoints may exchange parameter and option information during this phase, such as the
Maximum Segment Size (MSS) at each end, and whether different TCP options are imple-
mented. The MSS of the connection is chosen as the minimum of the two declared values,
or a default value?. Whenever an endpoint receives an unexpected segment, an indication

that the synchronization has failed, it resets the connection. The reset (RST) flag in the

2The default non local MSS value is 536 bytes (not including TCP and IP headers) which comes from the
requirement that a 576 byte minimum MTU be supported by all TCP/IP implementations [42, 210|. Another
popular size is 512 bytes, due to requirements in some UNIX systems on message sizes to be multiples of
512 bytes, for performance purposes (alignment on page and socket buffer boundaries) [159]. Using a larger
MSS for non-local connection (such as the 1460 byte possible over Ethernet) requires the use of path MTU
discovery. Note that the effective MSS is reduced when TCP or [P options are used [42].

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 54

CONNECTION CONNECTION
ESTABLISHED ESTABLISHED

CORNECTION

T CCNNECTICN
ESTABLISHED

ESTABLISHED
daca e
segmant [~

daca
segoent

delayed
ACK timer

Figure 2.3: TCP connection establishment and initial phase of a data transfer. The diagram
on the left corresponds to the case where the receiver is using delayed ACKs. The diagram
on the right corresponds to a receiver that acknowledges all segments.

TCP header is used to carry this signal to the other end (see Fig. 2.1).

The specification in RFC793 allows for data to be carried on the segments sent in the
three way handshake, but requires that the data be buffered until the connection is correctly
established. In practice, no data is sent on these segments since not all implementations
deal correctly with such data {211]. The handshake is normally initiated by one endpoint,
making an active open. Typically, the other end would have already done a passive open
(listen), to wait for incoming connection attempts. In the case where the two endpoints
simultaneously do an active open, only one connection is formed.

In order to multiplex different connections between a pair of hosts, TCP uses a 16-bit
port number to identify each process. The source and destination port numbers are included
in the TCP header of each segment (see Fig. 2.1). The port numbers of the source and

destination processes, when concatenated with the source and destination host IP addresses,

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 55

Application | Port
FTP data 20
FTP control 21
SSH 22
Telnet 23
SMTP (mail) | 25
WWW (Web) | 80

Table 2.1: Port Numbers for Popular TCP Applications.

uniquely identify each connection. The concatenation of a <host IP address, port number>
is called a socket. Therefore, a connection is uniquely identified by a pair of sockets, one at
each of its endpoints.

At each endpoint, the TCP stack examines the port number in a received TCP segment,
and places the segment in the TCP receive buffer of the process associated with the port.
A range of port numbers (0-255) is reserved for well-known applications such as Telnet and
FTP [190]. A larger range is usually reserved in common operating systems (e.g., 0-1023
in UNIX), and the use of well-known ports typically requires super-user privileges [42]. As
described in Section 2.9.1, a process can ask for a specific local port number. Establishing
connections to processes using non-well known port numbers requires higher level procedures
for communicating the port number. For example, FTP clients specify the local port number
to which the server should establish a data connection in a PORT command. Multimedia
applications use the Session Initiation Protocol (SIP) to exchange port number information
for a session [99).

A connection can be closed by one side in one direction, but still be used to transfer data
in the other direction. However, this property is not required and some implementations
don’t have this ability. The connection is closed when one side performs an abort or after
both sides close the connection. A segment with RST flag is sent when a connection is
aborted to indicate that data might have been lost. The state for a closed connection

has to be remembered for a “linger” time (called TIME_WAIT state), which is 2 Internet

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 56

Maximum Segment Lifetimes (MSL), or 240 seconds. During this period, the (remote socket,

local socket) pair is considered busy and cannot be used.

2.3.2 Re-ordering and Duplicate Elimination

In this section we describe the mechanisms which allow data to be re-ordered at the receiver,
and duplicate data to be eliminated.

Effectively TCP provides a virtual pipe at a one byte granularity. TCP achieves reliable
in-order delivery of the bytes through the use of per-byte sequence numbers, a sliding window
mechanism to detect duplicates and a checksum field to detect bit errors. We go into more

details in the paragraphs below.

Sequence Numbers and Sliding Window

Conceptually, TCP assigns a sequence number to each data byte based on its position within
the data stream. The sequence number of a segment is the sequence number of the first byte
of the segment. The destination can detect transmission errors by computing a checksum
on the received segment and comparing it to the checksum value in the TCP header. If
the checksum fails, the segment is discarded. Otherwise, the received sequence numbers are
checked against a (sliding) window of acceptable numbers, as follows.

TCP uses the sliding window to detect duplicates®, while allowing enough segments to
be outstanding in the network to “fill the pipe”. The window is shown in Fig. 2.4. The
left edge corresponds to the next expected byte (denoted by rcv.nzt), while the right edge
corresponds to the remainder of the receive buffer. A data byte whose sequence number does
not fall within the window is discarded. Bytes in a segment that fall within the window
but do not coincide with the left edge of the window are buffered. This allows the proper

reordering of out-of-order data. Although the buffering of out-of-order data is not required,

3[t is also used in flow control and congestion control, but these are clever design decisions which are
secondary to this function.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 57

}@————— rcv window ——»]

|@———— snd window —_—

sent but not ACKed yet send asap

!

snd.una snd.nxt

Figure 2.4: TCP windows.

it is crucial for a good performance. Data received in-order advance the left edge of the
window. Duplicate data in TCP may result from packet duplication by faulty devices, from
the finiteness of the sequence space (wrap-around), from the presence of segments in the
network sent by earlier incarnations of the connection, or from retransmissions from the
source.

In order to limit the possibility of duplicates from previous instances of the same connec-
tion being erroneously accepted, the numbering of data bytes when a connection is initiated
starts with a “random” number. RFC793 specifies that the initial sequence number be taken
from a counter incremented every 4 microsecond by the machine’s internal clock. In practice,
however, this is usually violated. For example, BSD-derived implementations increment the
counter by 64,000 every 500msec and after creating a new TCP connection [211]. When a
system crashes and loses information about the sequence numbers used for previous con-
nections, it has to wait for 1MSL “quiet time” (120 seconds) before establishing any TCP
connection. This requirement is usually violated, however, on the assumption that rebooting
takes time long enough to drain the network from old packets [211]. The initial sequence
numbers are exchanged during the three-way handshake phase.

The sequence number space used in TCP is 32-bit long. This means that a finite number

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 58

of sequence numbers are possible, and for TCP to handle arbitrarily large transfers, the
sequence number space necessarily wraps around. The sliding window size cannot be larger
than half the total sequence space, otherwise a receiver would not be able to differentiate
between new and old data. In fact, since the sender and receiver windows can be out of
phase, the maximum window size is a fourth of the total sequence space, i.e. 23¢ bytes, or
1GB. The window size field in the TCP header is 16 bits long, allowing windows up to 64KB
(see Fig. 2.1). This means that there would be a limit on the potential throughput of TCP
connections, unless a larger window size can be communicated. Larger windows are needed
for large bandwidth, long delay links. Therefore, to fill such large pipes, an option for scaling
up the window size was introduced as part of RFC1323 “Extensions for High Performance”
(see Section 2.7.2) [122|. Given that the sequence space wraps around in a time inversely
proportional to the transfer rate, the same set of extensions included additional protection
against wrapped sequence numbers in the form of a timestamp added to each segment. The
timestamps are 32 bit longs, and when appended to the 32 bit sequence number provide a

larger effective sequence space.

2.3.3 Retransmission of Lost Data

In this section we describe TCP’s mechanisms for loss recovery, namely a positive acknowl-

edgment strategy with timer-based retransmission.

Acknowledgments

The receipt of each transmitted byte has to be acknowledged by the destination. Acknowl-
edgments are piggybacked on data packets or sent in empty segments (called pure ACKs),
if there is no data flow in the reverse direction. TCP acknowledgments carry the sequence
number of the next expected byte. This is referred to as a “positive acknowledgment”
strategy. TCP ACKs are “cumulative”, i.e. they cover all bytes correctly received at the

destination. A received segment that is either outside the window, or inside but does not

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 59

fall on the left edge of the window, elicits an acknowledgment for the current left edge of the
window (rcv.nzt) [42, 51, 190]. These ACKs, called duplicate ACKs, are sent in empty
segments, and stimulate the sender to retransmit the segment that appears to be missing.

One advantage of the cumulative ACK scheme is that a later acknowledgment covers an
earlier one, which gives some robustness against the loss of ACKs. However, the information
provided in a cumulative ACK is rather limited, and hinders efficient loss recovery. In an
effort to mitigate this aspect, the Selective ACK (SACK) TCP option has recently been
introduced [150], whereby a receiver can specify up to 4 non-contiguous blocks of received
data. Block information consists of the sequence number of the left (first byte in block) and
right edge (next byte after end of block) of each block. In order to provide the latest ACK
information, the first SACK block always contains the information about the segment which
triggered the ACK, unless this segment advanced the regular cumulative acknowledgment
value. This additional information allows the sender to identify the gaps in the received
byte sequence, and more intelligently retransmit the lost data and avoid unnecessary re-
transmissions. However, a segment is considered by the sender to be correctly received at
the destination only when it is covered by a regular, cumulative ACK. Moreover, the SACK
information is discarded whenever the retransmit timer expires at the sender, which consid-
ers that the receiver might have dropped all the out of order data, e.g. because it ran out
of space. An algorithm which uses the SACK option to improve TCP’s congestion control
behavior is described in Section 2.6.5.

Note that the receipt of an ACK for data does not imply that the data was received by
the destination process. Rather, it means that the destination TCP has received it, and will
take care of delivering it to the process. TCP provides a flag, called push (PSH), by which
a sender can prompt the destination TCP to deliver the data to the application. The use of

this flag is described in more detail in Section 2.9.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 60

Retransmission

TCP uses a timeout-based retransmission mechanism to recover from packet loss. Thus,
when no acknowledgment is received for a particular segment within a timeout period, TCP
retransmits it. Note that segments carrying no data, i.e. only carrying control information
(e.g., pure ACKs), are not transmitted reliably, except for segments carrying the SYN or
FIN flag. Each of these therefore consumes a sequence number, before the first actual data
octet and after the last data octet respectively.

Conceptually, the scheme works as follows. When a segment is sent, it is placed in a
retransmit queue, and a timer is initialized to a (dynamically computed) retransmit timeout
value (RTO), and started. Then, if the segment is not acknowledged before the timer expires,
it is retransmitted. We go into the details of how the timeout value is computed in Section
2.6.

In practice, in order to reduce the processing overhead, TCP implementations rely on
packet receive interrupts and large, fixed clock intervals for gating protocol events, such as
sending ACKs and retransmitting segments, and for measuring time. Thus, TCP implemen-
tations use a single clock that ticks at regular “coarse” intervals which define the granularity
of the timer (e.g., BSD-derived implementations use a 500 msec clock, while Linux TCP
uses a 200 msec clock).

In practice, retransmission is commonly implemented as follows. When a segment is
sent, it is placed in a retransmit queue. If the queue was empty, the retransmit time is set
at the current time plus an RTO. At each clock tick, TCP checks the sockets which have
non-empty retransmit queues for segments that need to be retransmitted. If it is the case,
the segment at the head of the queue is retransmitted. The RTO value is doubled, and the

next retransmission time is set at the current time plus the new RTO value (exponential

backoff).

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 61

Whenever the segment at the head of the retransmit queue is acknowledged, the retrans-
mit time of the new head of the queue is set to the current time plus one RTO*. When all
outstanding data are acknowledged, the retransmit queue becomes empty and is taken off
the list of socket queues waiting for timeout.

In addition, a “fast” retransmission of the head of the queue can be triggered by the
reception of several (e.g., 3) duplicate ACKs before the timer expires. In both cases, the
retransmission is followed by congestion control measures, which we discuss in Section 2.6.

Note that some implementations organize the data in the retransmit queue in segments,
as they were transmitted, while others do not keep the segment boundaries. In the first
case, when the retransmit time of the segment at the head of the queue is passed, it is
retransmitted. In the second case, a new segment can be created which combines multiple
previously sent segments. This results in more efficient use of the network by decreasing
the header overhead. To approximate this behavior, implementations which keep segment

boundaries attempt to coalesce neighboring segments when retransmitting data.

2.4 Flow Control

TCP uses the sliding window mechanism to provide flow control, whereby the destination
TCP indicates in each ACK the number of bytes it can accommodate in its receive buffer.
This value (the receiver window, called rcv.wnd - or rwnd) limits the number of bytes that
the sender can have outstanding (unacknowledged) at any time (see Fig. 2.4).

A sender which has gotten a zero window advertisement from the receiver regularly
probes the receiver for window updates, since the ACK carrying a window update is not
reliably transmitted and could be lost. The first probe is sent after a retransmit timeout
period, and the subsequent ones are sent at exponentially increasing time periods [42] (RFC

793 specified a fixed 120 second period between probes). Note that the sender is supposed

%A small optimization is used in Linux, where the retransmit time is set at (current time + RTO - RTT
estimate) to account for the time it took the prior head of the queue to be acknowledged.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 62

to correctly deal with the case where the receiver advertises a window that is smaller than
the amount of data already in the network (which corresponded to a previously advertised
window value). In this case, called “shrinking window”, the sender has to wait for the window
to open up beyond the previously sent limit before sending new data [211].

An interesting use of the advertised receiver window for congestion control purposes is
described in [128]. The idea is for routers to intercept ACKs which are flowing in the reverse
direction on a congested port. The router would decrease the window advertisement in the
ACKSs to choke the senders, while attempting to achieve a fair division of the bandwidth
among the active flows. This scheme has the attractive property of allowing loss-free con-
gestion control. However, it requires that ACKs flow on the same path as data packets,

which is not always the case in the Internet.

2.5 Mechanisms for Improving Efficiency

In some situations, the operation of TCP may result in many small packets to be exchanged
between a connection’s two endpoints, leading to severely inefficient network use. This can
happen in two main situations. The first is when the receive window advances in small
steps, as would happen when an application reads data in small increments. The second is
when an application generates data in small chunks, such as in Telnet, or for applications
that have badly buffered write calls to TCP [157].

The small packets problem is very common, and is easily encountered when the applica-
tions or the transport protocol are not properly designed. This problem was encountered in
the early 1960s in the Tymnet network, and solved using fixed gating timers, which allowed
source hosts to aggregate data into larger, more efficient packets [165].

The first type of situation was highlighted in the original TCP RFC793. The specification
stressed that implementations need to actively attempt to combine window advertisements.

This issue was further addressed by Clark in RFC813 (1982), who named it the “Silly Window

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 63

Syndrome” or SWS. The second was addressed in RFC896 (1984) by Nagle. We discuss each

in turn.

2.5.1 SWS

The Silly Window Syndrome refers to the problem of many small packets being generated
when the offered window results in a small usable window at the sender. RFC793 clearly
warns implementors of this problem, due to receivers compulsively advertising window in-
creases however small they are when acknowledging segments. Nevertheless, some “simple
minded” -as RFC793 puts it- implementations were deployed, as attested by the need for fur-
ther specification in RFC813. Once a window is divided into small pieces, there is no natural
way of recombining them. The situation can degenerate into very inefficient performance
for long, continuous transfers.

RFC813 proposes a receiver-based and a sender-based solution, updated in RFC1122.
While one of the two is sufficient, the presence of both is needed to deal with cases where

the other end does not implement the modifications. The current standard is as follows.

Receiver-based The receiver refrains from advertising a window update unless at least half

the window or 1 MSS, whichever is smaller, can be advertised.

Sender-based: The sender computes an estimate of the receiver window by keeping the
mazimum offered window value. It refrains from sending new data until free space is
the smaller of 1 MSS and one half the estimated window. The initial idea, in RFC793,
for a sender-based scheme proposed that the sender waits for some reasonable time
until the window is large enough. The further specification in RFC813 is still vague,
where it is suggested that the sender waits until 1/4 of the offered window be free.
However, this value could become very small as the receiver buffer fills. This explains
why the solution above, adopted in RFC1122, keeps track of the mazimum window

offered by the receiver.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 64

2.5.2 Delayed ACKs

In addition to the SWS problem, RFC813 identifies a problem with implementations which
perform compulsive acknowledgment, which can result in several ACKs being sent for each
segment. By sending fewer ACKs, the number of packets and the associated transmission
and processing overhead are reduced. In addition, by delaying the ACKs, TCP gets the
opportunity to update the window, and the chance of piggybacking the ACK on data seg-
ments increases. The delayed ACK scheme was later included in RFC1122 - Internet Host
Requirements [42]. Note that RFC793 makes a conscious choice of accepting that 2 ACKs
be sent for each segment (one for the data, the other for the window update), in order to
avoid retransmission that could result from delaying the ACK for too long.

The delayed ACK scheme, as originally specified in RFC813, would not generate an ACK
unless: (i) the segment it corresponds to had the PSH bit set (see Section 2.9), (ii) it produces
an increased usable window, (iii) it is necessary to avoid retransmission or is piggybacked
on data. To avoid retransmission at the sender, RFC813 suggests a 200 to 300msec timer be
started when a segment is received and needs to be acknowledged. Regardless of the other
conditions, the ACK is transmitted when the timer expires. The 200msec value was chosen
in order to keep the response time acceptable to human users.

The delayed ACK procedure was updated in RFC1122 to its current form. As a first
step in aggregating ACKs, RFC1122 states that TCP must not generate an ACK before ail
the segments in the receive queue are processed. In the updated delayed ACK scheme of
RFC1122, the receiver sends a pure ACK if:

1. The delayed ACK timer ezpires, or

2. Two MSS-sized segments worth of data have been received since last ACK was sent.

RFC1122 places a maximum of 500msec on the timer value. Current implementations use

a timer which fires at regular intervals (typically 200 msec), and is used to trigger the

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 65

transmission of ACKs for sockets that require it, resulting in 100 msec average ACK delay.

Most implementations ignore the PSH bit when delaying ACKs. Some BSD and Linux
versions allow “immediate ACK on PSH” to be turned on as an option. Other implementa-
tions (e.g., Windows) acknowledge every other segment regardless of their size. A well-known
bug found in some implementations ignores the presence of TCP options in TCP segments
when checking for two MSS-sized segments {185]. This means that received segments will be
considered smaller than 1 MSS and therefore the receiver would send an acknowledgment
for every three such segments.

Note that the specification of delayed ACKs does not differentiate between normal and
duplicate ACKs [42|. However, most implementations do not delay duplicate ACKs, and this
is recommended in the standard for TCP congestion control (RFC2581), which also recom-
mends immediately acknowledging segments that (even partially) fill gaps in the sequence
space [9]. Similarly, the SYN-ACK segment is typically not delayed.

The delayed ACK mechanism can have significant effects on the performance of TCP. For
example, in short RTT high speed environments, the transfer time of small files (which would
take a few msec) is disproportionately increased given the delay in hundreds of msec suffered
by the first ACK, as we show in Chapter 3. In addition, in request-response applications,
such as HTTP, it can delay transactions which generate segments that are smaller than 1
MSS [101]. Furthermore, as discussed in the following section, it can badly interact with
Nagle’s algorithm to significantly limit the transaction rate between two hosts. Finally, the
delayed ACK scheme also affects the various congestion mechanisms, as discussed in Section
2.6.

For these reasons, some Unix implementations allow the delayed ACK mechanism to
be turned off, usually on a machine wide basis. In recent Linux implementations, the first
few ACKs after a connection is started are not delayed, in order to reduce the effect of the
scheme on TCP’s startup behavior. This mechanism was developed in the early days of

the Internet, and uses fixed default values which were adequate or justified then but may

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 66

be inadequate at this time. In particular, given that the window update delay is typically
small with current processing speeds, the only benefit that delayed ACK would provide is
the piggybacking of the ACKs on data segments. It might therefore be useful to provide the
option of disabling the delayed ACK through the socket interface for applications that do

unidirectional transfers.

2.5.3 Nagle

The problem of small packets is partly solved by the SWS and the delayed ACK schemes.
Nagle’s algorithm addresses the situation where applications write data to TCP in small
chunks, and therefore complements the SWS algorithm at the sender.

The origins of Nagle's algorithm go back to the early 1980s, when packet loss and re-
transmissions lead to congestion collapse in Ford Aerospace Corporation’s network. In par-
ticular, some highly utilized trans-continental links in Ford’s corporate network were being
inefficiently used due to applications (mainly teletyping) generating large numbers of small
packets. An adaptive solution was necessary for that network since a fixed solution, such
as the delayed ACK timer, would either not work for connections going over the long delay
links, or would be frustrating for users on the fast part of the network [165].

Nagle’s solution, originally described in RFC896 [165], specified that the transmission of
any data be unconditionally held as long as there are unacknowledged data. This ties the
aggregation of bytes to the round trip time (RTT) of the connection and the applications’
data generation rate. The larger the round trip time is, relative to the inter-byte generation
time the more aggregation will occur. With this scheme in use, the data up to the full sender
buffer would be held until the previously sent data are acknowledged. While this behavior
is acceptable when aggregating small amounts of data in one or two segments, or when the
buffer size is small, it is not appropriate for current use. Indeed, in its original form i.e.
without checking the amount of data being buffered, the algorithm would result in highly
bursty traffic.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 67

Nagle's algorithm as implemented in modern TCPs specifies the following:

o Data which cannot fill a I MSS sized segment must be held until all previously sent

data are acknowledged.

The SWS mechanism and Nagle’s algorithm serve complementary roles: data are sent when
both allow it. Note that the sender SWS and Nagle algorithms are invoked after the con-
straint placed by the sliding window is considered.

Since the two schemes were developed in parallel, Nagle did not consider the interaction
of his scheme with delayed ACKs, which were not implemented in the Ford network. In
fact, the interaction of Nagle and delayed ACK can perceptibly degrade the performance of
TCP applications. The most common situation concerns unidirectional transfers, where the
unavailability of data on the reverse path causes the delayed ACK mechanism to be always
invoked. In this context, whenever the last segment in a transfer is smaller than 1 MSS,
and the number of MSS-sized segments sent is odd, the transfer will suffer a delayed ACK
timeout. To address this problem, Minshall proposed holding data only when there is an
unacknowledged segment that is smaller than 1 MSS [157|. This achieves the goal of limiting
the number of small packets in the network, while avoiding unnecessary delays for corner
cases. Minshall’s modification is currently implemented in Linux senders. Another common
situation concerns request-response (transaction) applications. For these applications, the
client may send a request in two separate segments. Thus, when the second segment is
smaller than 1 MSS, it would be held by Nagle’s scheme at the source. In this case, the
server, which needs to wait for the remainder of the request, does not generate a response,
and the communication will stall waiting for the (delayed) ACK of the first segment. In order
to avoid this situation, applications have to appropriately buffer their requests and attempt
to generate MSS-sized segments [166]. These two problems are commonly encountered, and
lead to a limit of 5 transactions per second on the system. This limit is a characteristic

symptom of the Nagle-delayed ACK interaction.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 68

Nagle’s scheme is simple and effective, particularly for Telnet, its intended application.
It has the attractive property of being “naturally” adaptive. On high speed networks, where
the RTT is typically small, its effect is negligible, while it is most effective on low speed long
delay links with large RTT. However, such aggregation of bytes does not suit all applications.
In particular, it degrades the user perceived quality of highly interactive applications which
require a continuous stream of small segments to be sent, such as for communicating mouse
movements in the X-Window system. For this reason, the option of disabling it is required
in all implementations. Applications can do so by setting a flag (called TCP_NODELAY)
through the socket interface.

2.6 Congestion Control

Originally, Cerf and Kahn assumed that the retransmission mechanism would be rarely used
[31]. This belief was based on the experience with the early ARPANET, which consisted
of fairly homogeneous set of links and hosts, interconnected in a well-thought out fashion,
and with excess capacity [165]. TCP constants were well tuned to this particular network.
However, this assumption broke down as soon as the network technologies used in the
Internet became more heterogeneous, and its growth made careful and controlled design
impossible. As a result, congestion started to be a serious problem, and retransmissions
became more frequent. The early “congestion control” measures, described in Section 2.5,
were simple and ad hoc, and mainly addressed the inefficient use of the network by the
various applications.

TCP’s congestion control mechanisms were first implemented in 1987. Since then, they
have undergone several changes, as more became known about their performance in various
types of networks. In this section, we present the mechanisms implemented in TCP, discuss
their evolution, and describe the differences between the various versions. We discuss the

network performance of TCP in Section 2.7.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 69

Aano, NewfReno
set cwnd 1o flightSize/2+IMSS

FAST RECOVERY
Inflate window by IMSS
Jor each duplicate ACK

Increase ewnd by IMSS Send new segment if
/ br each new ACK possible
START
set cwnd 0 IMSS
ssthresh o large valuve CONGESTION AVOIDANCE

Increase cwnd by l/cwnd for each

new ACK
NewReno

cwnd > sathesh Dupiicate of partial ACK

received

Dupiicate ACK received

Figure 2.5: Summary of TCP’s congestion control mechanisms showing the differences be-
tween Tahoe, Reno and NewReno.

We start with the first version of the mechanisms, known as Tahoe, then describe the
modifications made by the subsequent versions, namely Reno and NewReno. A summary
of these mechanisms is shown in Fig. 2.5. Note that the mechanisms of Vegas, which we
cover in Section 2.6.4, are fairly different from those of the other TCP versions and are not

included in this figure.

2.6.1 Tahoe Congestion Control Mechanisms

The goal of the congestion control mechanisms is to prevent congestion collapse by finding
an appropriate rate of transmission for each connection. TCP’s sending rate is directly
dependent on the size of its sliding window, which allows multiple packets to be in flight at
a time, and is roughly equal to %‘g}f"—i In order to dynamically control TCP’s transfer rate,
Jacobson introduced an additional window limit, which varies based on network conditions,
called “congestion window” (cwnd). Then, the effective limit on outstanding data, called

send window (swnd), is set as the minimum of the receiver advertised window (rund) and

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 70

congestion window

- = = - SSthresh

loss

Slow
Start

timeout

Congestion
Avoidance

ssthresh

L1

loss

loss

b - e - - - - - - - - o - - -

lllllLLLLJLpllLl>
time

Figure 2.6: TCP congestion control mechanisms in action.

the congestion window:

swnd = min(cwnd, rwnd).

In other words, TCP’s window has a maximum equal to the receive window, and the role

of the congestion mechanisms is to find a window value between 1 MSS and this maximum

which is appropriate for the current network conditions. To achieve this goal, TCP performs

the following:

1. Initially starts with a small window, and probes the network for the available band-

width (Slow-Start).

2. Reacts to congestion by decreasing the congestion window (Multiplicative De-

crease). Since there are no explicit congestion indications from the network, TCP

relies on packet loss to infer congestion. Packet loss is detected through either the

reception of a number of duplicate ACKs (Fast Retransmit) or a retransmit timeout.

However, this assumption fails in certain network environments where a main cause

of packet loss is bit error rate, such as over wireless links. We will go into the details

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 71

of proposals for addressing such issues in Section 2.7.4.

3. Performs a slow probe (Additive Increase) when the network is believed to be prone

to congestion (Congestion Avoidance)

In addition, given the role of the retransmit timeout as a congestion indication, the algorithm
for calculating the retransmit timeout was improved and an exponential retransmit timer
back-off was deemed necessary.

TCP’s behavior is a special case of the more general “Additive Increase and Multiplicative
Decrease (AIMD)” control. AIMD is shown to provide efficient and some form of fair sharing
of network resources for users with identical congestion feedback and synchronized feedback
loops in [53]. However, differences in round trip times among users affect the feedback delay,
as well as the congestion recovery time of different TCP connections. As a result TCP does
not provide fairness in sharing bandwidth in the Internet [77].

Some of these mechanisms have roots in earlier work done at Digital Equipment Corp.,
where research on timeout-based and delay-based congestion control was conducted during
the early and mid 1980’s [125, 126]. In particular, a version of Tahoe’s congestion window
adaptation algorithm, “Linear Increase and Sudden Decrease” is described in {125]. A con-
gestion control scheme similar to TCP, called CUTE (Congestion control Using Timeouts at
the End-to-end layer), is described and studied. CUTE uses a one packet initial window and
sets the maximum window size based on information about (or estimate of) the pipe size
available for the user. It increases its window by one after a full window is acknowledged,
which is the rate of increase during TCP’s slower probing phase mentioned above. Finally,
CUTE decreases the window size to one after a timeout, and resumes the window increase
to “re-explore the maximum”.

In the following sections, we look at each of the new mechanisms in detail.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 72

Slow Start

The goal of Slow Start is to avoid a problem in the operation of the original TCP, where
the sender at the start of a connection may transmit up to a receiver window worth of
data in one burst. When the window is larger than the buffering available in the network,
packets have to be dropped and eventually retransmitted with a significant performance
cost. In the Slow Start phase, TCP increases the congestion window gradually toward the
maximum value, rather than send a full window worth of packets as soon as the connection
is established. However, the rate of increase during this phase was made to be exponential,
i.e. fast enough to limit the performance loss while the connection operates at a small send
window. The window is increased as follows.

At the start of this phase, the congestion window is set to a small Initial Window Size
(IWS), which can be no larger than 2 MSS [9]. The initial congestion window is typically
set to 1 MSS at the start of a connection. However, a well-known bug in some BSD-derived
implementations increases the window when the ACK for the SYN-ACK segment is received.
Therefore, the endpoint which performs a passive open (i.e. server) effectively starts with
a 2 MSS window [101]. Obviously, this behavior has been accommodated in the standard.
Note that starting with 2 segments allows connections to avoid waiting for a delayed ACK
to expire, which would happen if only 1 MSS segment is sent. In fact, larger initial values
have been proposed as means to improve performance [7] (see Section 2.6.5 for more on this
subject).

The congestion window is subsequently increased by one MSS for each acknowledgment
for new data that is received, as depicted in Fig. 2.3. Thus, if the receiver acknowledges every
segment, each transmission for the current window opens the way for an additional one. This
results in the window size doubling after each window worth of data is acknowledged. The
time needed for the window to reach its maximum value is then RTTlogoW .. When the

receiver implements delayed ACKs, the exponential rate of increase is reduced to 1.5 times.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 73

Slow Start is entered when a connection is initiated or after congestion is detected (re-
transmit timeout or receipt of 3 duplicate ACKs). It is also recommended that the cuwnd be
reset to the initial window size and the Slow Start entered when a2 TCP connection goes idle
for a long time (e.g., larger than a retransmit timer) [9, 119]. This has for goal to prevent
the source from sending large bursts into the network, given that the network state could
have changed in the meantime.

Increasing the congestion window based on the number of received ACKs has several
drawbacks.

First, as noted earlier, most TCP receivers implement the delayed ACK mechanism (see
section 2.5.2). The slower rate of increase which results can have noticeable effects on long
bandwidth delay product paths. The window increase rate is slowed down further if ACKs
are lost. For this reason, some TCP implementations attempt to ACK every segment during
Slow Start. Heuristics have to be used since the receiver does not know in which congestion
control phase the sender is. Thus, some receivers acknowledge every segment up to a fixed
number of segments at the start of the connection. Conversely, a concern has been raised
about receivers speeding up the opening of the window and the source’s sending rate, by
dividing the ACK for each segment into multiple separate ACKs [198].

Second, the scheme does not differentiate between window-limited transfers and appli-
cation limited ones. Thus, the cwnd increases to large values even when a few small packets
are being sent. For example, this is typically the case for Telnet connections, or for persis-
tent HTTP/1.1 connections when many small server responses are followed by a large one.
The large window opens up the way for large bursts to be sent without having effectively
probed the network.

For these reasons, it has been proposed that the amount of data acknowledged by each
ACK be used to increase the window [8, 11, 16]. However, this modification, called byte
counting, may lead to aggressive window size increase and large bursts being sent when

several ACKs are lost. Therefore, the scheme limits the window increase in response to an

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 74

ACK to a few MSS.

In general, the second problem above belongs to the so-called “window validation”
category. More precisely, in some situations, the congestion window size may not correspond
to the current network conditions. In addition to the case of application-limited growth, the
window may become invalid when the connection goes idle for a long time. As indicated
earlier, the TCP standard recommends that the connection performs Slow Start when it is
idle for a retransmit timeout period. However, some TCP implementations do not follow this
recommendation [100}, and some interpret “idle” as the time since the last receive [221|. For
the HTTP application at the server side, this interpretation is self defeating since each send
is preceded by the receive of a request, which effectively resets the idle time. Two somewhat
orthogonal issues need to be addressed here. The first is insuring that the congestion window
is “valid” during a connection’s lifetime. The second issue is avoiding large bursts of data to
be sent back to back when the window size allows it (e.g., after an idle time, or when TCP
recovers from segment loss, where one ACK can open up the whole window).

To address the first issue, a recent RFC recommends that the congestion window not
be increased when the TCP is application-limited, and only increase it in response to an
ACK when the window is full (RFC2861, [100]). However, the main idea it introduces is
an experimental mechanism for decaying the congestion window when a connection is idle.
The proposed decay function is to reduce the window by half after each RTT (actually, once
per RTO) for which the connection is idle. This is vaguely reminiscent of the TCP decrease
rate in the presence of loss. When the connection becomes application limited, the RFC
recommends decreasing the congestion window to half way between its current value and
the maximum value actually used during the previous RTT. This gradually decreases the
window toward the value in use when the connection stays application-limited.

The second issue, can be naively addressed through placing a limit on the number of back
to back segments that can be sent. A more elaborate technique, would be to pace segment

transmission. This technique, called TCP Pacing, has been actually suggested as a general

\J

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL

-~

transmission strategy for TCP, to be used throughout the lifetime of the connection. This
could be required in large bandwidth-delay product networks. In this context, TCP needs
to use large windows and intermediate router buffering resources may not be large enough
to hold the amount of data thus generated. When TCP uses the regular Slow Start, the
whole window may be sent in a burst, not allowing time for the data to be “buffered” in
the links. We discuss TCP pacing in more detail in Section 2.7.2. A more localized use of
pacing has been proposed for restarting connections after idle time, especially in the context
of HTTP/1.1 connections (Rate Based Pacing) [221]. The authors propose in this case to
evenly space packet transmission at a rate calculated from the previously achieved sending
rate. The implementation described requires rate estimation mechanisms which are not
implemented in all TCPs (except Vegas), and a fine granularity timer to clock packets out.
The pacing ends when the first ACK arrives, which reduces the cost of using the new timer.
Rate based pacing provides a compromise between fast restart (which could result in packet
loss) and conservative behavior (going back to Slow Start).

Slow Start ends and Congestion Avoidance is entered when the congestion window size

crosses a dynamically computed threshold, called ssthresh, as discussed below.

Congestion Avoidance

TCP’s goal in the Congestion Avoidance phase is to operate cautiously as the window gets
close to the value at which loss previously occurred. Ideally, a TCP connection operating in
this phase is in equilibrium, where it puts a new packet in the network only after an old one
leaves (i.e., “self clocking”). In practice, however, TCP still probes the network for resources
that might have become available by continuously increasing the window, albeit at a slower
pace than in Slow Start.

In Congestion Avoidance, the congestion window is increased by one MSS every time a
full window is acknowledged, usually according to the following formulas.

If the congestion window is in units of packets, after each ACK is received the window

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 76

1s increased as:

cund = cwnd + ——1—,
cwnd

Therefore, once cund worth of packets are acknowledged, the window increases by 1 MSS.
Again, the rate of increase is reduced when the receiver uses delayed ACKs. If the window

is kept in bytes, the formula used becomes:

SMSS+«SMSS
+ .
cund

cund = cund

The description of Tahoe's reaction to congestion indication in [119] can be confusing.
While it is stated that after congestion is detected, the cwnd is reduced by half (i.e., multi-
plicative decrease), the cwnd is actually set to 1 MSS (not the initial window size, which may
be 2MSS), and the sender enters Slow Start. In addition, TCP keeps a variable (ssthresh)
that records the °“."'T" value, and switches from Slow Start to Congestion Avoidance when
cwnd crosses ssthresh. More precisely, as specified in the current standard [9|, ssthresh
records m , where flightSize is the amount of outstanding data (since cwnd may
grow beyond rwnd, which then becomes the limit on the sender window). Then, TCP is in
Slow Start when cwnd < ssthresh, and in Congestion Avoidance beyond that. The initial
value of ssthresh can be arbitrarily large (usually set to the receiver window) [9]. A sugges-
tion to set ssthresh based on an estimate of the pipe size (similarly to the CUTE scheme)
was made in {106], but never implemented. Such a modification might avoid large packet loss
during Slow Start, where the sender otherwise generates increasingly larger bursts regardless

of the pipe size.

Retransmit Timeout

In this section, we discuss the retransmit timeout (RTO), which is considered to be an
indication of severe congestion for the purposes of TCP’s congestion control mechanisms.

We first describe the way an appropriate timeout value is computed, then discuss its use in

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 7

congestion control.

Computation

In this section we trace the development of TCP’s algorithm for timeout computation, and
describe the algorithm currently used. Originally, the designers of TCP thought that a
fixed, suitably chosen value for the timeout would be sufficient. However, when the different
networks and TCP applications were considered, it became clear that TCP requires an
adaptive timeout. Indeed, an accurate and adaptive timeout computation is crucial for the

proper operation of TCP.

e The computation must be accurate because a retransmit timer that fires too early
aggravates congestion. In addition, the performance of a connection with a short timer
can be significantly degraded since TCP’s congestion control mechanisms interpret a
timeout as a congestion indication, and severely reduce the sending rate in response.

Conversely, a timer that fires too late increases the delay before loss is recovered.

e The computation must be adaptive because there a large differences in the character-
istics of different paths in the Internet, as well as in the characteristics of the path of

a connection during its lifetime (e.g., due to cross traffic and routing changes).

The first step in dynamically computing a timeout value is to collect RTT samples. An
RTT sample value is obtained by measuring the time elapsed between sending an octet
with a certain sequence number and the time that sequence number is acknowledged. Most
implementations thus only time segments containing data, and only one segment at a time
(i-e., once per window). The larger the window, the smaller the RTT sampling frequency
becomes. A low sampling frequency slows down the convergence of the RTO computation
algorithm, and may result in incorrect timeout values [130]. As part of the Extensions for

High Performance [122], timestamps were added to segments, and these are echoed back by

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 78

the receiver, allowing a precise estimate of the RTT for each segment. A limited study of
TCP connections at a Web server shows a steady increase in the fraction of hosts using the
timestamp option. At the time of the study, the percentage of such hosts was found to be
small, at about 15% [17]. However, this can quickly change, if the most common operating
systems for servers and user stations implement and start using this option.

After collecting RTT samples, a suitable value for a retransmit timeout is computed.
RFC793 first proposed an adaptive procedure for computing a retransmit timer value. Each
RTT sample is used to update a smoothed RTT value (SRTT), which retains an exponen-
tially weighted moving average of the history from recent samples. The suggested values
for the upper bound and lower bound on the RTO were 1 minute and 1 second respectively.
RFC1122 states that these values were found to be inappropriate and suggests different
values: 240 seconds and a fraction of a second respectively [42]. The latest specification of
the retransmit timer computation in RFC2988 brings back the original values. It puts a 1
second minimum on the RTO, and specifies the minimum value of the upper limit to be 60
seconds.

Further experience with the Internet showed that the RTO computation above suffered
from significant shortcomings [130, 131, 156, 233|. A study of Internet delays showed that
delay measurements are generally Poisson distributed, except for bursts of delays that are
several times larger than typical [156]. The estimation algorithm of RFC793 was shown to
react too slowly to such bursts, resuiting in many fzlse timeouts. A proposed fix was to have
a large weight applied to samples that are larger than the current SRTT. In addition, the
weight used for samples smaller than the SRTT would be small to slow down the decrease
of the RTO estimate. This makes the estimate more sensitive to an upward trend in sample
values, and less sensitive to a downward trend [156]. However, this scheme was based on
experimentation with a few paths and could not be claimed to solve the problem of large
variance in samples. Indeed, this problem can only be solved by taking into account the

delay variance itself when computing the RTO, a modification introduced by Jacobson and

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 79

Karels in 1987 [119]. This modification was required by the Host Requirements (RFC1122,
[42]), and specified in more detail in a recent Standards Track RFC2988 [186]. The latter
describes the algorithm assuming the TCP retransmit timer is implemented using a fixed
grain clock, as follows.

When a new RTT measurement is made, it is first used to compute a smoothed es-
timate of the variation in RTT, in the form of the variance or standard deviation of the
samples (RTTV AR). However, the actual implementation computes the much simpler es-
timate of the difference between the smoothed RTT estimate and the measurement, i.e.,
|SRTT — RTT)| instead of the variance or standard deviation, for computational efficiency
reasons. The fact that the difference |SRTT — RTT)| is also a more conservative (larger)
estimate makes it an attractive alternative [119]. Thus, the smoothed variation is initialized

at %’I for the first RTT sample RTT, and computed as follows for following samples:

RTTVAR = (1-8) x RTTVAR+ 8 x |SRTT - RTT|

The recommended value for 8 is % The smoothed RTT estimate is subsequently com-

puted as:

SRTT =(1 —a) x SRTT + a x RTT

The recommended value for a is %. Finally, the RTO is updated as the smoothed RTT

estimate plus a variance factor:

RTO = SRTT + max(G, K x RTTV AR)

where G is the clock granularity (e.g., 500msec) and K = 4. The value of K = 2, initially

proposed in [119] was increased to 4 in a subsequent revision of the paper, when experiments

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 80

showed that it was not appropriate for the Internet. Since RTT measurements are made
using a coarse granularity clock, normally the measurements are either 0 or 1 clock periods.
The typical RTO is therefore 2 ticks (the minimum feasible timer). This results in timeouts
between 1 and 2 clock periods in length, since the first clock tick may occur immediately
after the segment is transmitted (i.e. between 500 msec and 1 sec). However, an artifact
in some BSD-based implementations of the computation details described in [119] results in
the minimum RTO being 3 clock ticks {44|. Thus, for these implementations, the minimum
retransmit timeout is 1 second. In fact, RFC2988 strongly recommends that the RTO be
rounded up to 1 second whenever it falls below that minimum, mainly to avoid spurious
retransmissions. However, RFC2988 does acknowledge that this limit could be changed in
the future [186].

Smaller values for the clock granularity have been shown to provide better performance
in some situations [12|. However, due to the requirement on the minimum RTO, they do
not reduce the timeout for the common case (i.e., RT'T < 200 msec). Besides the increased
processing burden, proposals for increasing the granularity of the clock have been faced
with arguments about stability, since the RTT in the Internet is highly variable (79, 123].
For example, the RTT estimate could be skewed by measurements from small packets, and
would fail if a large packet is sent, due to the additional transmission delay that it sees on
each hop, particularly over low-speed links. This problem was recognized early on [156].
Another problem would result from estimates based solely on packets which did not see a
delayed ACK, which means that the RTO estimate could be up to 200 msec off. Therefore,
a large minimal RTO value seems necessary to avoid such pitfalls.

RFC1122 specifies that the initial value for the RTO should be set to 3 seconds, but
many implementations use 6 seconds instead {42, 186, 211]. The timer may be set to larger
values for connections that use very large delay links (e.g., satellite) [42|. For a 3 second
initial value, the clock granularity will cause the actual timer duration to be anywhere from

2.3 to 3 seconds.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 81

When a timeout occurs for a retransmitted segment, the RTO is increased, and the
segment retransmitted again. Some implementations double the RTO value, while the BSD-
derived implementations would step in a table of arbitrary factors (the first few factors
correspond to doubling the RTO) [130]. This is the ezponential retransmit back-off, which
is thought to be necessary for the stability of the network. While this may not necessarily
be true, the exponential back-off does help in quickly adapting the timer to very large delay
links. However, such a strategy can significantly affect a connection’s throughput, as shown
in a study of a large number of TCP connections sharing a bottleneck link [161]. The study
shows that heavy packet loss causes some connections to succeed in increasing their window
aggressively through Slow Start, while others fall into multiple exponentially increasing
retransmission timeouts. Thus, the lack of a middie ground between extended idle times
and aggressive Slow Start causes sharp performance differences among connections. To limit
the extent of the period where a connection is frozen, many implementations restrict the
number of times a segment can be retransmitted to 4 or 5. If no ACK is received, the
connection is considered to have terminated. Most implementations limit the maximum
timer value to 64 seconds, and the total time a packet is retransmitted to 75 seconds (BSD
derived) or 120 seconds [211].

Before the updated RTO computation was introduced, Karn and Partridge had identi-
fied another problem with TCP’s RTO sampling scheme, which is caused by the sampling
ambiguity created by retransmitted segments [131|. A segment could be retransmitted due
to a faulty retransmit timer, or because the segment itself or its ACK were severely de-
layed in the network. The problem is the following. When an acknowledgment arrives for
a retransmitted segment, there is no indication as to which transmission of the segment
induced it. Thus, an ACK received after a retransmission could be associated with any of
the copies of the segment it acknowledges. What to do in such a situation was not specified
at the time, and implementations did different things. If the ACK is associated with the first

transmission of the segment, the delay sample could be too large. On the other hand, if it

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 82

were associated with the latest retransmission, the sample could be too small. A larger-than
true sample could be acceptable, since it will increase the RTO which is the right thing to
do when there is congestion. Too small of a sample, however, would not be appropriate,
and results in unacceptably low RTQO values, leading to excessive retransmissions. The au-
thors opt for a third option, which is to ignore samples from retransmitted segments, and
describe an algorithm for RTO computation (known as Karn's algorithm), as follows. When
an acknowledgment arrives for a segment that has been retransmitted, ignore the resulting
RTT measurement, and use the current backed-off RTO for the next segment. Only when
a segment is acknowledged without retransmissions can the RTO be calculated using the
RTT estimation. Note that this algorithm might oscillate between backed-off RTO based
timeouts and the slowly updated SRTT-based timeout as correct samples are collected in
between. The authors argue that only a few such oscillations will occur before the estimate
converges. However, even a limited number of retransmission timeouts can lead to severe
performance degradation as the algorithm converges. As per RFC1122, Karn’s algorithm
with ezponential backoff is now required in all implementations [42]. Note that with the
use of the timestamp option described earlier, it is possible to disambiguate samples based
on the timestamp value echoed back in each segment, and Karn’s algorithm would not be
not required [L86]. However, as mentioned earlier, the use of the timestamp option does not

seem to be very common yet [17].

Congestion Control Reaction to Timeout

After a retransmit timeout, the congestion window size is set to 1 MSS, and the ssthresh is
set to flightSize/2 (but no less than 2MSS). Thus, TCP always performs Slow Start after

a timeout, which is considered to be an indication of severe congestion.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 83

Fast Retransmit

As indicated earlier, TCP uses two congestion indications. In this section, we discuss the
indication consisting of the receipt of multiple duplicate ACKs. More precisely, duplicate
ACKs are pure ACK segments which acknowledge the same sequence number (i.e. not
piggybacked on data, where it is normal to have multiple data packets carrying the same
ACK sequence number). Typically, the count of duplicate ACKs skips any inter-mixed ACKs
which are piggybacked on data segments, and continues as more pure ACKs are received.

The concept behind the Fast Retransmit mechanism is the following. A TCP sender
can infer the presence of a hole in the receiver buffer from the receipt of duplicate ACKs.
This would trigger a “Fast Retransmit” of the lost segment indicated by the ACK infor-
mation. This idea was first mentioned by Cerf and Kahn in the original TCP paper [51].
Fast Retransmit is not discussed in the paper which introduced the other congestion control
mechanisms [119], and was first described in [121]. It was finally standardized in RFC2001
[212], and is included in all TCP versions. In particular, while Fast Retransmit is consid-
ered to be part of “Tahoe TCP”, it was not included in some early releases of the Tahoe
code. These are still encountered in studies of TCP versions deployed in the Internet (e.g.,
Windows NT and 95 stacks) [139, 177, 183].

The algorithm implemented in TCP specifies that a threshold of duplicate ACKs have
to be received before the supposedly lost segment is transmitted. The threshold provides
protection against duplicates resulting from packet reordering or duplication inside the net-
work, which are common occurrences in the Internet [9, 182]. A recent measurement study
confirms that a threshold of 3 duplicate ACKs is a good compromise between incurring
false retransmits due to duplicates caused by packet reordering, and slow loss recovery, (i.e.,

waiting for a retransmit timeout)® [182]. However, this means that a connection with a

3This value means that 4 different ACKs (the first one plus 3 duplicates) carrying the same sequence
number need to be received at the sender [9]. However, some implementations (e.g., Microsoft Windows and
some versions of Linux [183]) set the threshold at 2 (3 ACKs total).

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 84

small window (e.g., smaller than 4 packets) has little chance of recovering from loss without
a timeout, since the number of duplicate ACKs may be insufficient to trigger the retransmit.
Several fixes have been proposed, which we address later in this section.

After the packet is retransmitted, the ssthresh is set to flightSize/2 (but no less than
2MSS), and the subsequent behavior makes the difference between the Tahoe, Reno, and
NewReno versions. Tahoe TCP sets the congestion window to 1 MSS, thus entering Slow
Start, similarly to after a retransmit timeout. We describe the behavior of the other versions,
which attempt to avoid going through the Slow Start, in the sections below.

Clearly, the proper functioning of the Fast Retransmit mechanism relies on the stream
of acknowledgments from the receiver. Therefore an “aggressive receiver ACK policy” (i.e.,
disregarding the delayed ACK rules) is needed when there is a gap in the received sequence
space [9, 42|.

Several issues related to the Fast Retransmit mechanisms have been discussed in the
literature.

First, it was pointed out that multiple Fast Retransmits may unnecessarily happen after
multiple non-consecutive losses in the same window of data, resulting in serious performance
loss. This problem is caused by duplicate ACKs sent in response to duplicate packets
(correctly received at the destination but resent by the source), and is most severe for TCP
Tahoe (because of its fall-back to Slow Start after a Fast Retransmit, resulting in a go back
N behavior). This problem can be partially fixed by having the sender ignore ACKs received
after a Fast Retransmit, which do not cover more than the data that had been sent when
the Fast Retransmit occurred (i.e. have a sequence number strictly larger than the sequence
number of the last byte sent, plus one). This prevents two Fast Retransmits from occurring
due to loss of segments from the same window. However, this fix fails to detect the loss of
segments beyond what was sent in the original window, when the lost data are contiguous
to the last segment sent in that window. More information is required to solve the problem

completely, such as would be provided through the use of selective ACKs (SACK) (80, 85|.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 85

Second, measurement work of Internet traffic has shown that in practice, most transfers
are short and window sizes are often not large enough to trigger Fast Retransmit. For
example, a study of a busy Web server found that Fast Retransmit recovers from less than
45% of the packet drops [26]. The same study found that 95% of the retransmit timeouts
occur after packet loss which cannot be recovered due to small window sizes. This has been
confirmed by another study which cites an 85% ratio [144]. To recover the cases where at
least one duplicate ACK is received (25% of the timeouts). It is suggested in [26] that the
sources send a new segment after receiving a duplicate ACK, to generate more duplicates
and trigger the Fast Retransmit. This proposal is one of several suggesting modifications
to the response of TCP when receiving duplicate ACKs. All the proposals entail sending
new data segments (i.e. not previously sent) after receiving a number of duplicate ACKs,
if permitted by the receive window size but would not have otherwise been allowed by the
congestion window. One of the early ideas was to send a new data segment for every two
duplicate ACKs received {106]. This has the attractive property of being well aligned with the
principle of multiplicative decrease (by a factor of two) of the sending rate after packet loss.
The proposal was further developed and implemented as the “Rate Halving” modification
[152], which we discuss in more details in Section 2.6.5. A recent proposal, dubbed “Limited
Transmit”, suggests sending a new data segment for each of the first two duplicate ACKs
received {15, 19]. This increases the chance of meeting the threshold condition for Fast
Retransmit. When the duplicate ACKs actually result from packet reordering inside the
network, the effect of this scheme would have been to space the new segment transmissions,
instead of sending a burst when the ACK for the aggregate finally arrives. A negative
side-effect might be to unnecessarily trigger the Fast Retransmit mechanism in situations
where the packet reordering inside the network is severe enough to let the newly generated
duplicate ACKSs return while the original data segments are still on the way to the receiver.
An earlier version of this document also included a proposal for reducing the threshold for

retransmission to be the number of duplicate ACKSs expected if one segment was lost, when

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 86

the sender does not have new data to be sent. Since this modification is not robust in the
face of reordering, and could result in excess retransmissions from long lived connections,
the authors propose using it only once during the lifetime of a connection. However, it might
prove to be very useful for short transfers that characterize applications such as the Web,
for which the Limited Transmit modification would not give much help by itself. It could be
possible to get most of the benefits by limiting its use to the case where the application has
already written all its data, and closed the connection. In Chapter 4, we study the benefits
of using service differentiation mechanisms in the network to protect connections operating

at small windows.

2.6.2 Reno Congestion Control Mechanisms

In this section, we describe the modification introduced to Tahoe’s congestion control mech-
anisms which resulted in the Reno version. Reno has been the most widely used version
of TCP until recently, and is being steadily replaced by NewReno and TCP with SACK
(17, 177].

The Reno modification concerns the behavior of TCP after a Fast Retransmit. Recall
that Tahoe sets the congestion window to 1 MSS, and enters Slow Start. On long delay
links, the severe reduction in sending rate that this reaction entails may lead to emptying
the pipe, and a significant loss of throughput [121]. In order to avoid that, TCP Reno
introduces an new phase, called Fast Recovery, which is entered after a Fast Retransmit.
In Fast Recovery, TCP strives to stay in congestion avoidance, and attempts to keep the
pipe full and the “ACK clock” running (with a relatively large congestion window) [9, 121].
The algorithm works as follows.

After sending what appears to be the missing segment, the Fast Recovery is entered.

The cwnd is “inflated” to become:

cund = ssthresh +3IMSS

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 87

This accounts for the 3 packets for which the duplicate ACKs were sent, and that have
therefore left the network. Afterward, for each additional duplicate ACK received, the
window is increased by one MSS. New packets are sent when the window allows it. This
requires duplicate ACKs from half the previous window to be received since the ssthresh
was set to half the outstanding data in the Fast Retransmit phase. In the meantime the
connection is idle®. Note that a receiver can induce the sender to transmit more data by
sending more duplicate ACKs than actually warranted. This can be exploited by users who
would want to improve their transfer rates [198].

Congestion avoidance is left after the receipt of the first ACK which acknowledges new
data. When that happens, the window is deflated back to ssthresh [9]. If the ACK does
not acknowledge the highest sequence number sent (“partial ACK™), then this indicates that
at least another packet has been lost within the same window. However, Reno ignores this
indication, and relies on the sliding window rule to determine if it can send more data.
Thus, the only way Reno can recover further lost packets without timing out is through
performing a Fast Retransmit for each. Clearly, the conditions for Reno to succeed in doing
that get tighter as the number of lost packets within one window increases. In practice,
Reno rarely recovers from 2 or more packet drops [66, 106], and typically has to wait for a
retransmit timeout. For this reason, the performance of Reno can be worse than Tahoe’s in
short RTT situations, where the latter’s use of Slow Start does not reduce its throughput.
We encounter such effects in Chapter 3. The NewReno modification, which we discuss next,
tries to avoid the retransmit timeout during Fast Recovery when multiple segments are lost

within one window.

SThis is referred to as Reno’s ZIL idle time after a Fast Retransmit. This is an approximate statement,
since the actual idle time depends on both the window size and the RTT.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 88

2.6.3 NewReno Congestion Control Mechanisms

NewReno addresses Reno’s inability to recover from multiple packet loss by modifying its
behavior during Fast Recovery. The NewReno modifications are based on suggestions made
by Hoe in [106]. The algorithm works as follows.

During Fast Recovery, if a “partial ACK” is received, the sender considers it as an indica-
tion that the next expected segment was lost. NewReno then retransmits the segment that
appears to be missing, and awaits the corresponding acknowledgment. The Fast Recovery
phase is not exited until the highest numbered byte sent before discovering the first packet
drop is acknowledged. When this happens, the window is deflated back to ssthresh and
Congestion Avoidance resumed. The details of the algorithm are given in [85].

In the operation of NewReno, a choice must be made regarding whether or not to reset
the retransmit timer when a partial ACK is received. Indeed, in case of multiple packet loss,
a tradeoff exists between early timer expiry and excessive lengthening of the Fast Recovery
period. If the timer is not reset, a timeout may happen even for a small number of packet
drops. On the other hand, if the retransmit timer is reset after each partial ACK is received,
and considering the eventuality of large packet loss (such as would happen during Slow Start,
where as much as half the window may be lost), the NewReno mechanisms may result in
appreciable performance degradation compared to Reno and Tahoe. Indeed, note that during
this phase, the sender is only able to put 1 packet per RTT in the network, and this can be
very inefficient if the RTT is large and many packets are lost in a window. The Rate-Halving
algorithm, discussed in Section 2.6.5, makes a modification to NewReno that addresses this
issue, along with reducing the burstiness of the sender after a Fast Retransmit. However,
note that none of the TCP versions (Tahoe, Reno, NewReno, Rate Halving or Vegas) can

recover from a lost Fast Retransmitted segment without a timeout [38].

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 89

2.6.4 TCP Vegas

This version of TCP introduces mechanisms that are fairly different from the other TCP
versions [45], and has similarities to other delay based congestion control mechanisms such
as (126, 222].

Vegas’ window increase policies are fundamentally different than those of the other ver-
sions. These are based on an estimate of the ezpected throughput, Tozpected, and a comparison

with the actual throughput, Tycryar, where:

window size
smallest measured RTT

Tapected =

During the Slow Start phase, the window is increased exponentially every other RTT.
In between, the window remains fixed, and the achieved throughput is compared to the
expected throughput. If Tychieved < Tezpected: the Congestion Avoidance phase is entered.
However, the possibility of overshooting the available buffering (and suffering packet loss)
are not eliminated, especially given the exponential increase in the window size.

The Congestion Avoidance algorithm is also based on the comparison of the expected
and actual throughput, done once every RTT. Two thresholds are defined o and B,7 with
the goal of controlling the amount of “extra” (Tezpected — Tactuat) data in the network. If
Terpected—Tactual < @, the window is increased by one segment. If & < Terpected—Tactuat < B,
the window is not changed. Otherwise, the window is decreased by one segment. This
algorithm avoids the large oscillations that characterize other TCPs’ behavior.

After a Retransmit Timeout, Vegas decreases the congestion window to 1 MSS, similarly
to the other versions. However, the Fast Retransmit behavior was modified. Thus, packets
are retransmitted earlier than for the other versions, such as on the receipt of 1 duplicate

ACK, if the retransmit timer is found to have expired (i.e. without waiting for the clock).

"Example values are @ = 1 and 8 = 3. These are given in units of packets while they should be in units
of throughput. The translation of the values is straightforward, just divide by the minimum RTT observed.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 90

However, these changes have been controversial, since they may correspond to broken timer
behavior [123]. Finally, Vegas makes some minor modifications to some parameters, such as
reducing the congestion window by 1/4 instead of 1/2 after a Fast Retransmit, or starting
with a window of 2 segments even after a retransmit timeout [45, 3|.

There have been mixed reports about Vegas’ performance. Compared to Reno, TCP
Vegas is reported to give a higher throughput and a more balanced throughput distribution
among competing connections with different RTTs, with lower delay and retransmissions [43,
3, 158]. A recent simulation study confirms these observations, but finds lower performance
over satellite links. The same study found that most of the benefits come from Vegas’ slow
start and congestion recovery techniques, while the modified congestion detection might have
negative effects on the performance [105]. Another study, found that Vegas’ throughput was
slightly worse than Reno in experiments involving transfers between Europe and North
America [38]. However, this might be due to the sharing of links with the other, more
aggressive, TCP versions. Concerns about Vegas’ performance in the face of route changes
have been raised. In particular, when the new route has a larger RTT, Vegas’ mechanisms
result in low throughput. A solution to such problems would be to define the base RTT as
the minimum RTT in a finite window of RTT sample history, as opposed to the full lifetime
of the connection. Such a change, however, increases the fears of Vegas’ instability and the
possibility of sustained congestion, where connections would interpret larger RTTs as an
invitation to send more packets in the network [158].

Fairness issues have been identified for Vegas even in the absence of RTT differences
have been raised, where a bias against “old” connections exists. The problem comes from
the fact that a connection which starts on an empty path will find a lower base RTT than a
connection that starts later, and shares the bandwidth with it. The latter will operate with
a larger window and thus get a larger share of the link bandwidth [105].

In summary, the main concern about Vegas stems from the fact that a network measure

that is positively correlated with congestion, namely the RTT, induces Vegas to send more

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 91

traffic.

2.6.5 Other Modifications

In this section, we discuss modifications and enhancements to the congestion control mech-

anisms which are not considered to be “versions” by themselves.

TCP and Explicit Congestion Notification

TCP’s congestion control mechanisms are based on the idea that the network is a “black box”,
which has to be probed for the right operation point, using packet loss as the only indication
of congestion. However, some applications that use TCP do not tolerate the delay incurred
when a packet is lost and needs to be retransmitted. The Explicit Congestion Notification
(ECN) proposal aims at eliminating the need for dropping packets to signal congestion. The
experimental specification requires the use of a bit in the IP header (in the old TOS field
- now renamed “DS Field”) to carry the notification (another bit is used for indicating the
ECN capability) [193, 194].

Endhosts negotiate the ECN capability at the start of a connection. The ECN bits are
set by routers which are experiencing congestion, and are echoed back to the sources by
the TCP receivers. The senders react by decreasing their window, inform the receivers that
they reacted to the indication, and perhaps also inform the application of the congestion.
Thus, ECN requires modifications to routers, as well as to TCP senders and receivers. In
a proposal for ECN-enhanced TCP [79], the explicit congestion indication is considered to
be less serious than packet loss. Thus, the source upon reception of an ECN, would haif
both the cuwnd and the ssthresh. However, it resumes sending normally. Furthermore, the
source does not react to ECN more than once per window of packets. The congestion control

mechanisms are otherwise not changed.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 92

The benefits of ECN are numerous, especially when combined with active queue manage-
ment schemes which provide early congestion feedback. Besides providing a better perfor-
mance for delay sensitive applications, it results in improved TCP throughput by avoiding
retransmit timeouts. In particular, the elimination of loss for short transfers can greatly
improve over the performance of regular TCP versions [197|. The problems with such an
approach include deployment and compatibility issues, as well as the problem of the loss
of ACKs carrying the indication [79, 194]. While some client TCP stacks implement ECN

(e.g., Linux), it is yet to be deployed in the network and in servers [177].

Selective ACK and Forward ACK TCP

The Selective ACK (SACK) option is increasingly being deployed in the Internet {17, 177]. It
encodes a group of blocks (up to 4) of contiguous data that have been correctly received at the
destination. The latest SACK options are specified in [150], but no specific implementation
is described. The SACK options can potentially be used with any of the TCP versions.
However, common SACK implementations use Reno’s mechanisms with minor modifications.
These concern the way retransmission is done during Fast Recovery. More precisely, the
information in the SACK blocks is used to estimate the number of packets in the network,
and to send a new segment for each ACK with a SACK block that acknowledges the reception
of new data. In addition, the SACK information is used to selectively retransmit the packets
which have been lost. The sender would implement a scoreboard which keeps track of
the segments that have been received, and retransmits new data only after all the missing
segments have been retransmitted. In contrast to Reno, TCP with SACK exits Fast Recovery
only after all the data which were outstanding at the beginning of this phase have been
acknowledged {18, 150]. Simulation and experimental studies show that TCP with SACK
significantly outperforms regular TCP (Tahoe, Reno, NewReno and Vegas) in the presence

of high loss, and is often able to avoid retransmit timeouts [38, 66|.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 93

Forward ACK (FACK) TCP refines the estimation of outstanding data used in the im-
plementation of TCP with SACK described above. Instead of merely counting duplicate
ACKs, TCP FACK retains information about the forward-most data byte held by the re-
ceiver (hence the name), as reported in SACK blocks. It then estimates the amount of data
in the network to be the sent data which is beyond this forward-most sequence number,
plus any retransmitted data. The idea is that gaps in the received space correspond to
packets which have been dropped, and have therefore “left the network” akin to acknowl-
edged segments. This fact is exploited to inject more packets in the network than what a
regular SACK implementation would. Its authors claim that it results in improved TCP

performance, and is less bursty than Reno TCP with SACK options [151].

TCP with Rate Halving

The “Rate Halving” modification aims to keep the *ACK clock” running in Fast Recovery
[152]. Recall that, after a Fast Retransmit, Reno and NewReno TCP are idle while half a
window size worth of duplicate ACKs come back (i.e., about half an RTT). This number
of ACKs are needed before the congestion window grows back to a level that allows new
packets to be sent. This leads to the entire new window being sent in one half a RTT. The
idea is to avoid the lull in the sending, and the increased burstiness, by spacing the segments
over the whole RTT. This is done by sending a new packet for every 2 duplicate ACKs that
are received. This idea was suggested by Hoe in [106]. Similarly to other modifications
which transmit new packets in response to duplicate ACKs, Rate Halving improves TCP’s
loss recovery for small window sizes [38]. Otherwise, such connections would fail to generate
enough duplicate ACKs to trigger the Fast Retransmit. The implementation was initially

based on TCP FACK, but has been extended to be usable in any of the TCP versions [152].

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 94

Increasing the Initial Window

The increased initial Window modification, where TCP may start with a window of up to
the smaller of 4 MSS or 4380 bytes is specified in [7]. This value can also be used after
restarting from a long idle period. However, it does not change the fact that the window
must be set to 1 MSS after a retransmit timeout (and a Fast Retransmit for TCP Tahoe).

The potential benefits of starting with a large window (rather than 1 MSS) are many:

1. Avoid a delayed ACK timer. Recall that a receiver implementing the delayed ACK
algorithm will always wait for a timer expiry before acknowledging the first segment
if the initial window is 1 MSS.

2. Short file transfers, which constitute a large percentage of all file transfers (e.g, Web
and email traffic), are completed in 1 RTT.

3. For connections that have large RTT, this eliminates up to 3 RT'Ts from the Slow Start

phase, thereby decreasing the time where the connection is sending at a low rate.

The drawbacks are that network congestion and the probability of packet drop at router
buffers may be increased if all TCPs start with large windows [7].

Simulation results have shown improvements in throughput and download time over
many media, at the expense of a slight increase in packet loss rates and retransmitted
segments. However, in highly congested networks, the larger initial window resulted in
increased retransmit timeouts and reduced performance [6, 7, 188, 205|. This modification
obviously can result in lower performance in some cases, but this is out-weighted by the

benefits gained in the more general case.

2.7 TCP Performance

In this section, we summarize the main observations from TCP performance studies in

various network environments. We start in Section 2.7.1, by presenting general observations,

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 95

which are not tied to a particular network technology. We then move in Section 2.7.2 to
long bandwidth delay networks, where the challenges of obtaining high throughput have
motivated a large number of studies. In Section 2.7.3, we discuss the TCP performance
issues in asymmetric networks, such as over Digital Subscriber Loop (DSL) links. Section
2.7.4 discusses the problems faced when using TCP over wireless networks. Finally, we
summarize observations about TCP’s performance in Local Area Network environments in

Section 2.7.3.

2.7.1 General Observations

In this section we discuss the main characteristics of TCP traffic, and summarize general
observations about the performance of TCP.

The operation of TCP’s congestion control mechanisms results in bursty traffic. In par-
ticular, during Slow Start, the exponential window increase generates packets at twice the
rate of the returning ACKs, which are usually regulated at the connection’s bottleneck speed.
Since most TCP connections are short, they spend most of their duration in this phase. In
addition, this burstiness can be compounded by the delay and loss of ACKs. For example.
simulation studies have shown that ACKs which go through a congested node get bunched
up and lose their spacing, thus affecting the regularity of TCP’s “clock”. This phenomenon,
called “ ACK Compression”, results in increased burstiness at the sender, and correlates with
packet loss [232]|. These observations have been corroborated by limited measurements stud-
ies {26, 159]. An Internet traffic measurement found that ACK compression episodes usually
span a small number of ACKs [182]. Given the cumulative nature of TCP acknowledgments,
the loss of ACKs causes the congestion window to open in larger increments. Thus, while
a delayed ACK results in a three segment burst in Slow Start, a delayed ACK that arrives
after another one which was dropped in the network results in a 5 segment burst. These
effects are increased if the sender uses byte counting to increase the window size [8]. More-

over, some applications spawn multiple TCP connections within the same session, resulting

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 96

in increased burstiness in the session’s traffic. For example, popular Web browsers open
multiple connections to download the different components of a page [26].

Burstiness may lead to self similarity in the aggregate traffic [59], and increases the
chance of buffer overflow and packet drops in the network. The performance of the different
TCP versions in the face of packet loss differs considerably. In particular, the number
of packets lost within a window directly affects the subsequent throughput. As indicated
earlier, TCP Tahoe performs a Slow Start whenever a packet loss is inferred. This results
in reduced throughput and unnecessary retransmissions. TCP Reno usually can recover
from one packet loss efficiently, but fails to do so for muitiple drops. NewReno does recover
from multiple drops more efficiently than Reno. However, as the number of packet drops
increases, it becomes more efficient to have performed a Slow-Start instead. TCP with
SACK or FACK performs better than the other versions when multiple losses are incurred
[38, 66, 151|. Finally, Vegas suffers from the same problem as Reno in recovering from
multiple packet loss within one window [38]. Furthermore, the performance of Vegas is
known to suffer when sharing links with other TCP versions, which are more aggressive.
However, Vegas alone causes less packet loss and performs fewer retransmissions than other
TCP versions [45].

Packet loss in the network can lead to unequal sharing of network resources. First, bursty
TCP connections tend to lose more packets in network buffers than less bursty connections,
and their performance suffers as a consequence. Difference in burstiness may be due to
different link speeds, window sizes, RTT and TCP dynamics on different paths. This bias
is particularly felt in tail drop buffers, and can be mitigated by using random drop queue
management schemes, which distribute loss more evenly among the different connections
[77, 78]. In Chapter 3, we encounter this phenomenon in the context of LANs, where the
order of magnitude differences in link speeds between sources lead to very poor performance
for sources on high speed links. Second, a connection that goes through multiple bottlenecks

tends to receive a disproportionately small share of the bandwidth, and may be effectively

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 97

shut-out {77].

Unequal sharing of resources also results from TCP’s window increase mechanism. In-
deed, this mechanism depends on the RTT, as connections with long round trip times get
lower shares of a bottleneck’s bandwidth. In [77], it is proposed that the rate of the window
increase be made constant for all connections. This is achieved by changing the additive
increase in the Congestion Avoidance phase from 1 packet per RTT to aRTT? packets per
RTT (where a is a constant that needs to be appropriately set for a network). This result
in all connections increasing their sending rate by a packets/second each second. However,
this change is difficult to implement in a heterogeneous network [104].

TCP’s throughput during the lifetime of a connection is oscillatory. Indeed, the contin-
uous increase of the window in both Slow Start and Congestion Avoidance eventually leads
to large window size, and loss. Indeed, for a single TCP connection that sees no other traf-
fic, the Slow Start and Congestion Avoidance mechanisms result in an oscillatory behavior,
when the maximum window size is larger than the buffering available in the network®. Fur-
thermore, some evidence of synchronization (in-phase or out-of-phase) between connections
sharing a congested buffer was found in simple simulation studies {76, 232|. It is not clear,

however, whether or not the phenomenon is present in the real Internet.

2.7.2 Large Bandwidth-Delay Networks

Using TCP in large bandwidth delay (pipe size) networks presents several challenges. We
discuss each below and the solutions and TCP extensions which have been proposed to
address them.

First, the efficient use of such networks requires large amounts of data to be outstanding,

and the TCP window size should grow as large as the pipe size. However, the 16 bit field

3The buffer on a bottleneck link has to be at least half the maximum window size to avoid packet loss if
one connection is using the link. This assumes that the packets are arriving at the buffer in a burst at twice
the bottleneck speed. However, the actual minimum buffer size required for avoiding loss can be larger than
that, due to the various factors that increase TCP’s burstiness.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 98

in the TCP header places a limit of 64KB on the window. For this purpose, the Extensions
for High Performance in RFC1323 [122] introduce a window scale TCP option, which is
exchanged in SYN segments during the connection establishment phase. An endpoint which
implements this option specifies a value, which is only used if the other end’s SYN-ACK also
carries a value for this option. When the endpoints exchange option values, these values are
used for all ACKs during the connection’s lifetime. This window scale option allows TCP to
specify large receiver window sizes by providing a 1-byte scale value a, by which the window
field in the TCP header is to be left shifted (i.e., multiplied by 2). The largest allowed value
for a is 14, resulting in 2 maximum receiver window size of 23° =1GB, which is the maximum
possible for TCP’s 32 bit sequence space. In [4], an application level scheme, called XFTP,
for utilizing large pipes and improving the performance of file transfers is proposed, whereby
efficient usage of large pipes is achieved through striping a transfer across multiple parallel
connections.

Second, although the window increase rate during Slow Start is exponential, it might
represent a significant overhead in long RTT networks. To mitigate this effect, larger initial
window sizes have been proposed, as discussed in Section 2.6.5. In addition, the use of
delayed ACKs slows down the window increase during this phase, and introduces extra
overhead when the delayed ACK timer is used. For this reason, the use of a receiver which
ACKs all segments during Slow Start is recommended in this context [14]. A related problem
concerns the possibility of buffer overflow in intermediate routers, which need to buffer large
amounts of data as the window is increased during this phase. To reduce this eventuality,
a technique (called TCP Pacing) for TCP to spread the transmission of packets across
an RTT has been proposed [138]. TCP Pacing requires the use of fine granularity timers
and a leaky bucket scheme at the source to regulate the transmission time of packets during
an RTT. A simulation evaluation of TCP Pacing found that it may cause oscillations in a
bottleneck link, and performs poorly when competing with regular (e.g., Reno) TCP [2].

The authors attribute these problems to the fact that pacing delays congestion signals until

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 99

the network is over-subscribed, and causes synchronization of loss among flows sharing a
bottleneck. However, these observations might have been affected by phase effects due to
lack of randomness in the simulation scenarios considered (see Section 2.10.2).

Third, the performance loss due to packet drops can be significant if TCP falls back to a
1 packet window. Furthermore, with the large amounts of data in flight, loss due to bit error
rate can become a significant factor. This requires improvements to the efficiency of TCP’s
error recovery mechanisms, and has lead to two main changes. First, Tahoe’s severe rate
decrease following a Fast Retransmit was changed to a more subdued reduction in Reno, as
described in Section 2.6.2. Second, in order to improve the loss recovery following congestion
detection, the SACK options were introduced [122] (see Section 2.6.3).

Finally, with the large window sizes, RTT samples become less frequent. To obtain more
frequent RTT measurements, timestamps were added to segments, and these are echoed
back by the receiver, allowing a precise estimate of the RTT [122|. Large windows also
increase the problem of sequence number wrap around, where ambiguity in segment order
may arise. A technique that uses the timestamps and the sequence number in the TCP
header is specified in [122|. However, its complexity and the possibility of errors indicate

that an extension to the window field could have been a better choice [12].

2.7.3 Asymmetric Networks

Several popular network access technologies exhibit asymmetry in the up-link and down-
link speeds. Examples of such technologies include the Asymmetric Digital Subscriber Loop
(ADSL) and Direct Broadcast Satellite, which uses a satellite transmitter for the down-link
and a dial-up phone line for the up-link. In such networks, it is possible for the ACK traffic
on the up-link to cause congestion and loss of ACKs [10]. For example, a receiver which
acknowledges every segment will incur ACK congestion for a data link of 1.5Mbps and an
ACK link below 40Kbps (assuming 1,500 byte data and 40 byte ACK segments). As dis-

cussed earlier, the loss of ACKs slows down the window growth, and increases the burstiness

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 100

of the TCP sender. These two effects may lead to significant performance loss. Furthermore,
when multiple connections share the link, connections operating at small windows suffer a
more significant performance drop than others when their ACKs are lost.

Proposed solutions include the use of header compression to reduce the bandwidth con-
sumption of ACKs [120], as well as the implementation of congestion control measures for
the ACK traffic. For example, it is proposed to reduce the number of ACKs sent to 1 per K
packets, where K could be dynamically changed in a similar way to TCP’s regular conges-
tion control for data traffic. This results in a more regular window increase than with ACK
loss. In addition, sender modifications are proposed to make the data traffic less bursty,
even when ACKs open the window in large steps. Another proposed solution involves the

reconstruction of the ACK stream at the far end of the up-link [24, 27].

2.7.4 Wireless Networks

In this section, we discuss the performance issues faced when using TCP over wireless links,
and the different approaches proposed for addressing them.

The main problem faced in the wireless context is the effect of the relatively high trans-
mission error probability on TCP’s throughput. Recall that TCP considers packet loss to
be an indication of network congestion, and upon detecting loss it severely reduces its trans-
mission rate. This issue can be addressed at two different levels, namely the link layer and
the transport layer.

The first and obvious approach is to implement a link layer scheme for reliability which
would recover packets lost due to noise in the medium, such as using forward error correction
codes or link layer retransmissions. However, the link layer retransmission scheme should
preserve the ordering of packets. Otherwise, if it causes significant re-ordering, the resulting
duplicate ACKs sent by the receiver will frequently trigger the Fast Retransmit mechanism,
and cause throughput loss. Solutions for addressing this problem include intercepting and

filtering duplicate ACKSs on the return path. However, this restricts this solution to the last

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 101

hop before the destination, otherwise it might prevent the detection of real congestion loss
further downstream along the path of the connection {5, 10, 25, 27].

The second approach attempts to address the transmission error problem at the TCP-
level. In addition to the general improvements to TCP’s congestion control mechanisms
(e.g., Fast Recovery, SACK), several techniques have been proposed to specifically deal with
this problem. The first involves splitting the TCP connection, whereby a separate TCP
connection is established across the lossy link. This connection performs a more aggressive
retransmission of lost packets, and hides the local loss from the endpoints. Another tech-
nique, which does not break the end-to-end semantics of TCP, involves a snooping agent
which keeps copies of the data segments until they are acknowledged, and performs trans-
parent retransmissions of lost data. Similarly to the link layer retransmission case, the agent
needs to filter duplicate ACKs. By invoking the TCP data retransmission mechanisms lo-
cally, the congestion control mechanisms are not triggered at the sender. However, both
these solutions require symmetric routing, with both data and ACK packets going through
the same link.

TCP-level approaches can benefit from network indications which distinguish bit-error
drops from congestion drops. TCP would react to loss indications by retransmitting the lost
data without performing congestion control actions. However such mechanisms are yet to
be deployed in networks, and implemented in TCP stacks.

Satellite links are a particularly challenging case of wireless links. In fact, they combine
the characteristics of large-delay bandwidth paths, wireless paths and most often asymmetric
paths. Therefore, techniques for addressing the issues faced for each of these link types
should be used in this case [5, 10, 14].

2.7.5 Local Area Networks

The performance of TCP over Local Area Networks has not received much attention, partly

because LANs have been traditionally over-provisioned and provided much larger throughput

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 102

4xop probamility

.

.
,° "eentle® verimt

3 -
' verage
s sax 2 % man

—— — - Gune sile

Figure 2.7: RED drop function.

than the WAN. However, this particular environment may see more interest as LANs grow
in size to cover larger areas (e.g., Metropolitan Area Networks using LAN technology), or
support applications that require very high performance (e.g., Scorage Area Networks).
The characteristics of LAN (large bandwidth and short RTT) result in increased bursti-
ness. Moreover, packet loss and coarse timeouts result in significant relative performance
degradation for short transfers and poor network utilization [79, 139, 170|. Techniques for
improving TCP’s performance in LANs typically attempt to eliminate packet loss in the
network, e.g., using ECN [79] or MAC layer flow control [170]. In addition, given the large
throughput possible in LANS, there is significant interest in TCP acceleration and processor

offload solutions.

2.8 Active Queue Management

In this section we discuss active queue management mechanisms which have been specifically
proposed to handle TCP traffic in the network.

The Random Early Detection (RED) mechanism is currently the recommended active
queue management mechanism for the Internet [43, 78|. The goal of RED is to provide early
feedback to end hosts about congestion at a router port. through dropping (or marking when
ECN is used) packets before the port buffer is actually full. Arriving packets are dropped
based on the average queue occupancy computed using an Exponential Weighed Moving
Average (EWMA) according to a random drop function (shown in Fig. 2.7) [78]. At each

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 103

packet arrival, if the queue is non-empty, the average queue size is updated as follows:

Qavg = (1 - w)‘lavg + wq

where gq49 is the average queue size, w is the EWMA weight, and ¢ is the current
instantaneous queue length. If the queue is empty, the average queue size is exponentially

decayed depending on the time since the queue went idle, as follows:

Qavg = (1- 'w)m‘Iavg

where m = o pidleime _____ estimates the number of typical size packets (e.g.,
500bytes) that would have been transmitted during the time where the queue was idle. The
computed average queue size is used to determine the probability with which the packet
should be dropped?. The proposed drop probability as a function of the average queue size
is shown in Fig. 2.7. The drop probability is 0 when the average queue size is below a
threshold (mintxresn). Then, it is a simple linear function which increases from 0 to maz,
as the average queue size increases from ming,,esn to another threshold (mazpresn). When
the average queue size is larger than mazp,esh, the drop probability is set to 1. The figure
also shows an alternate drop function (gentle), which gradually increases from maz, to 1
as the average queue size increases from mazZipresh tO 2MaZTpresh- This drop function is
claimed to be more robust to the settings of maz, and mazresn [86]. The recommended
values for the various RED parameters are shown in Table 2.2. However, these settings have
been shown to give poor performance in many situations. In fact, RED is notoriously hard
to configure to improve over the performance of drop tail queues [54, 153].

The EWMA filter has for purpose to take into account the history of queue occupancy as

opposed to the instantaneous queue size. This allows occasional short bursts to be admitted,

9The actual drop probability used is a function of this value ps, p. = ps/(1 —count.ps). This helps spread
the drops uniformly in time, as the count of packet received since the last drop increases to 1/ps.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 104

Parameter | Recommended Value | Comments
w 0.002 Set to small value to filter instantaneous variations.
MiNhresh 5 packets Set depending on desired queue size.
MATthresh 15 packets Should be three times minppesh.
maz, 0.1 Originally recommended 0.02, later found to be too
small. This sets a target loss rate of 10%.

Table 2.2: Recommended settings of RED parameters (78, 83].

while ensuring that the average queue size is small. The random drop function is designed
to distribute the loss among connections in proportion to their bandwidth. Thereby, RED
is supposed to address problems which were observed in simulations with Tail-drop queues,
namely: a bias against bursty traffic, and the synchronization of connections caused by
simultaneous packet loss [78]. Not only has the ability of RED to address these problems
been questioned, but also their existence in the Internet is being challenged by recent findings
[89]. In particular, synchronization occurs when a limited number of long transfers share a
bottleneck, and congestion causes all the connections to backoff. However, it is nonexistent
when a large number of random size transfers are present. In Chapter 3, we show that RED
does break the bias against bursty connections for a small number of active flows, at the
cost of reduced aggregate throughput.

RED has been the subject of a large number of performance studies, which produced
a number of variants on the original scheme. For example, a simulation study found that
RED does not result in a balanced sharing of the bandwidth. In particular, by distributing
the packet loss across all connections, it penalizes "fragile" flows, e.g. flows with long round
trip times and/or small windows, which cannot efficiently recover from loss [143]. This work
proposes the use of a scheme, called Flow RED (FRED), which keeps track of the buffer
usage of active flows. The drop function applied to each flow is then made to depend on its
buffer usage. In addition, experimental work has shown that RED does not perform better
than Tail-drop. For a large number of connections, the router queue length was found to

stabilize around the maz,presn, which means that a RED queue behaves like a Tail-drop

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 105

queue with a size equal to that threshold [72, 73, 133]. Conversely, when the number
of connections is small, the drop function of RED becomes overly aggressive and results
in under-utilization of the link. A self-configuring Adaptive RED gateway (ARED) was
proposed to address these limitations. ARED dynamically modifies maz, as the average
queue size changes. Thus, when the queue size falls below min,esn, maz, is decreased
(e.g., divided by 3), and when the queue size exceeds maznresn, Maz, is increased (e.g.,
multiplied by 2). Otherwise, maz, is not changed. This scheme attempts to keep the queue
size between min presh and MaZThresh, Where the random drop operates as designed, and is
claimed to avoid the problems above.

A typical shortcoming with RED performance studies has been the focus on large file
transfers and network oriented performance measures. This leaves a gap in our understand-
ing of the performance of RED in the Internet, given the predominance of Web traffic in the
Internet (216, 217|. Not until recently did the results of a study of short transfers become
available [54]. This study consisted of an experimental setup with a fixed network topology,
and a large number of simulated HTTP users. The main observations were that RED had
minimal effect on HTTP response times, and that these times were largely insensitive to
RED parameters, unless the link is very highly loaded (more than 90%). This high load
range was the only one where RED could improve the performance compared to Tail-drop.
However, the improvements were obtained at the expense of long-lived connections, and
involved an exhaustive trial and error process. In Chapter 4, we present the results of ex-
tensive simulations where we compare the user-perceived performance of applications when
RED and Drop Tail queues are used in the network. These results show no compelling evi-
dence to support the claim that RED improves on the performance of Drop Tail. Moreover,
in Chapter 5, we show that the user-perceived quality of video and TCP applications is
degraded when random drop is used.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 106

2.9 Applications’ Use of TCP

This section is devoted to the use of TCP by typical data applications. We first present the
Berkeley socket interface that TCP offers to applications. Our focus is on the applications’
access to TCP's parameters rather than on the details of the socket setup and usage. Then,
we discuss the TCP PUSH and URGENT mechanisms. Finally, we describe how Telnet,

Web and FTP use TCP, and discuss some the performance implications that this use entails.

2.9.1 The Berkeley Socket Interface

The TCP Application Programming Interface (API) provides similar functionality to the
operating system interface for file manipulation. Processes send data by passing pointers to
buffers where the data are stored. TCP packages the data from the buffers into segments
and passes these segments to IP. At the receiving end, TCP places correctly received data
in a buffer and passes the buffer to the appropriate application. Typically, TCP and [P are
implemented as functions within the same process, and packets are passed between the two
through function calls. In this section, based on [210], we first describe the socket function

calls, then we describe the options which can be set by applications.

Socket Function Calls

The socket API consist of the following basic calls:

socket this call specifies the type of socket (TCP, UDP, etc...) and the address format
(Internet, UNIX internal, etc...). It returns a socket descriptor, which is an integer

value similar to a file handle.

bind used by a server application to register a TCP port, and by a client to choose a specific
port number. The call fills the (local IP address, local port number information) for
the socket. Clients which do not need a specific port number don’t need to use bind.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 107

connect this call establishes a connection (active open) to a specified (foreign IP address,

foreign port number). If the socket is unbound, connect binds it to an unused port.

listen this function is used by a server process to indicate its willingness to receive connec-

tions on a socket (passive open). A passive open may specify a specific foreign socket

to listen for or could accept connections from any foreign socket.

accept this call is executed by a server process after the listen call to wait for a connection
on the socket. It returns a new socket descriptor for the established connection. The

original socket can be used to accept new connections, or closed if desired.

close this function closes the socket, but TCP still tries to send the remaining data if any.
An option (called SO_LINGER) can be used to flush the data without attempting to

deliver it to the other end.
shutdown allows the connection to be closed in either or both directions.

setsockopt allows applications to set some options for a socket, including some TCP-

specific ones.

getsockopt allows applications to read the option values for a socket. This function is
necessary because setsockopt may not always succeed in changing a parameter value,

and the application needs to explicitly check the status of a change.

In addition, several versions of write and read function calls are available to respectively
send and receive data on a socket. These differ in the buffering assumed (e.g., contiguous or
scatter-gather). The scatter-gather read/write avoid an extra copying step by the application
to aggregate non-contiguous data in one buffer, which can otherwise result in significant TCP

processing overhead.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 108

Socket Options

TCP applications have limited access to TCP’s mechanisms through the socket API. The
relevant options which can be set through the setsockopt function or read through the

getsockopt function are the following:

TCP_MAXSEG this is a read-only value which returns the MSS for the socket.
TCP_NODELAY this flag is used to disable Nagle's algorithm. The default is enabled.

SO_LINGER this option can be used to discard any data remaining in the socket upon

a close function call.
SO__RCVBUF sets the size of the TCP receive buffer in bytes.

SO _SNDBUTF sets the size of the TCP send buffer in bytes.

The last two options can have a significant impact on TCP performance. Indeed, the actual
number of unacknowledged bytes is governed by the minimum of the receiver buffer size,
the sender buffer size, and the congestion window size. In congestion control performance
studies, the receiver and sender buffer sizes are considered to be large enough that the
congestion control window is the effective limit on the outstanding data. This is not always
the case. In practice, while it is possible to do so through the socket API, most applications
do not modify the system’s default buffer sizes.

Typical default values for the receiver window are 2KB, 4KB, 8KB (default for different
versions of the Windows operating system), 16 KB and 32 KB (default for Linux), and 64KB
(the maximum unscaled value). The default send buffer size is usually equal to the receive
buffer size. A measurement study done in 1996 showed that about 60% of the advertised
windows are 8KB or smaller [26]. A more recent study showed a larger average advertised

receiver window size of 18KB [17].

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 109

Small default values can limit a connection’s throughput when the congestion window
increases enough for the effective limit on the sending rate to be the buffer sizes. This
was shown to occur in several measurement studies [17, 26, 178|. However, some of these
statements are based solely on the receive buffer size as advertised in the receiver window
value, ignoring the effect of the sender buffer size (perhaps because they know it is large
enough not to be a factor). Situations where the send buffer size limits throughput have
also been encountered (101].

In general, the buffer size should be suitably chosen to provide reasonable performance
for the user’s connection speed. Buffer sizes that are too small may prevent the full use of fast
Internet connections, while large buffers unnecessarily consume memory leading to system
performance trouble and limitations on the number of connections that can be supported.
In addition, applications should modify the buffer sizes based on their characteristics and
requirements. For example, Telnet does not require large buffers, and its performance could
actually deteriorate when large buffers are used. Indeed, large buffers may be filled with
large server responses, making the application less responsive to user interrupt. On the
other hand, long FTP transfers over high bandwidth-delay links require large buffer sizes to
efficiently utilize the network. However, applications cannot dynamically adapt the buffer
size in response to network conditions, since the current API does not allow the modification
of the buffer sizes after the connection is established.

Another approach, discussed in [203], argues for moving the complexity of such decision-
making away from user applications. The authors suggest that applications should not deal
with adapting the buffer sizes to network conditions. Instead, the TCP buffers themselves
would be self-tuning. Placing such decision-making in the TCP sockets can be justified
by the presence of information about the network conditions in the form of the congestion
window. The scheme proposed in [203| for the receive buffer tuning is tied to a particular
TCP implementation (BSD), where the receive buffer value is a limit on the amount of

received data that can be buffered, rather than an actual allocation of memory space. This

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 110

fact is used to set the receive buffer to the maximum possible value. The send buffer
tuning scheme keeps the buffer size at about twice the bandwidth delay product of the
connection, as loosely reflected by the congestion window value. This twice than normally
needed value (i.e., 1 bandwidth delay product) is meant to keep enough data in the network
to avoid idle times in the event of packet loss, which theoretically would take TCP one
RTT to recover from. The send buffer allocation for each connection is further governed by
fairness considerations, to ensure equal sharing of memory resources between all connections.
The scheme is shown to perform almost as good as hand tuning of buffer sizes for high
performance, while avoiding the system thrashing that the latter suffers from when many

connections are opened simultaneously.

2.9.2 The PUSH and URGENT Mechanisms

In this section, we discuss two TCP mechanisms which allow the delivery of “urgent” and
“out of band” data to be expedited.

As previously mentioned, users have little control over the internal mechanisms of TCP.
Conversely, TCP does not deal with the internals of the data sent by the users. In particular,
it does not keep track of application-level message boundaries. Instead, TCP provides a
mechanism for applications to expedite the transfer of data. Otherwise, data could be
buffered by either the sending or receiving TCPs as they see fit, to improve network or
processing efficiency. This mechanism uses a bit in the TCP header, called the push (PSH)
flag, to communicate the information to the other end (see Fig. 2.1). Theoretically, the
PUSH function allows users to indicate that the data they have already given to TCP must
be sent to the other end as soon as possible, but it does not specify the exact boundary
of the data in question. Similarly, at the receiving end, the reception of a TCP segment
with the PSH flag set prompts TCP to deliver any buffered data to the destination process
without further wait. In doing so, it does not indicate the exact PUSH point to the receiving

process. Applications would use the PUSH function when the data given to TCP represents

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 111

a semantic unit (e.g., a meaningful application message) that has to be received as such,
or when the data generated is interactive and should not be delayed. In practice, most
implementations do not provide a way for applications to specify a PUSH. Instead, TCP
itself sets the PSH flag in certain situations, such as when sending the last segment in a
buffer, or when the Nagle algorithm is disabled. This behavior can be explained by the
fact that most-BSD derived implementations do not delay passing data to the application,
and therefore do not need the PSH flag. They set the PSH flag just in case it is needed
by the other end [211]. For example, the TCP impiementation in Windows passes the
data to the application if the PSH flag is set, otherwise, the data might be buffered for
up to 500msec, waiting for TCP’s clock to tick. In fact, the “eager” receiver behavior in
BSD implementations has been shown to result in severe performance degradation when
the receiver is under heavy load [63]. A “lazy receiver processing” approach is proposed
in [63], where the protocol processing of received packets is not performed as soon as the
packet is received. Rather, it is delayed until it can be performed at the receiving process
kernel scheduling priority. Along with early discard of packets, this is shown to give stable
operation at high load.

TCP also allows applications to send “urgent data” (e.g., a escape sequence for Telnet),
using another flag bit in the TCP header (see Fig. 2.1). This function can not be used
to send real “out of band” data. Rather, it just provides an indication of the presence of
urgent data, and a pointer to the location in the data stream where such data ends!?. It is

customary that URGENT data be also PUSHed to expedite its delivery.

2.9.3 Telnet

Telnet is a remote login application. In the common usage, users type characters at a

terminal, which are sent over the network to a server. The server then echoes each character

\Most implementations follow the BSD choice of pointing to the byte after the last urgent data. The
original RFC793 had both pointing to the last byte of urgent data and the next byte in sequence. RFC1122
decided on the one that ended up with most implementations non-conformant.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 112

back to the terminal, and occasionally sends the results of typed commands. Thus, Telnet
users, which need to see the typed characters appear on the screen, are sensitive to per-packet
delays. These delays have to be in the order of 150msec or less for best user-perceived quality
[206].

Telnet hands typed characters individually to TCP. If each character is sent immediately,
a stream of one octet segments would result. Such a stream has a very high header overhead
(e.g., 4000%), with at least 40 bytes of TCP/IP headers for each character. For this reason,
Telnet is one of the applications that benefit most from header compression. In practice,
Telnet traffic is regulated by Nagle's algorithm, which limits the number of outstanding
segments at any time to 1. On the server side, the delayed ACK mechanism insures that the
ACK for the received character(s), the window update when the application reads the data
and the echoed character(s) are all sent in the same segment. In Fig. 2.8, we compare the
behavior of Telnet as regulated by Nagle and the delayed ACK, to its behavior without either
of the mechanisms. Thus, Telnet typically has only one packet in flight at a time. This means
that if this packet or its ACK are lost, the application has to wait for a retransmit timeout.
As discussed in Section 2.6.1, the minimum timeout value is in the order of a second, and
therefore exceeds the acceptable echo delay limit. Furthermore, if a retransmitted packet
is lost, the subsequent timeout values are rapidly increased by the timer backoff algorithm.
Therefore, the repeated loss of a retransmitted segment quickly renders the application
unusable. In Chapter 4, we investigate the performance of Telnet during network congestion,
and study means of improving its quality using service differentiation.

Telnet is a typical example of an application which does not use the offered receiver
window, and still increases its congestion window as ACKSs are received. This means that
large bursts can suddenly be sent in the network, if it happens that the server or the client
generate such bursts. Therefore, Telnet might benefit from congestion window validation
measures (see Section 2.6.1).

Without loss in the network, the delay added by Nagle’s algorithm is considered to be

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 113

CONNECT ICN
ESTABLISHED

Figure 2.8: Telnet traffic with Nagle and delayed ACKs (left diagram) and without (right
diagram).

acceptable to users [165|. Indeed, users always have to wait for an RTT before they see the
echoes, and Nagle only adds another RTT to some. However, it also introduces a noticeable
effect, whereby some of the character echoes appear bunched up. On the other hand, the
delayed ACK timer is usually not incurred, since the ACK is piggybacked on the server echo
of each received character. However, some special 2-byte characters (e.g., function keys)
may be sent in two separate segments, and therefore the server has to wait for the second
segment before sending a reply. Since that segment would be held by Nagle at the client
side, the echo will suffer a delayed ACK timeout [211].

29.4 FTP

This section describes the way FTP uses TCP to perform file transfers between a client and
a server host.

An FTP session consists of a control connection and one or more associated data con-
nections. A client wanting to perform a file transfer to/from an FTP server first sets up

a TCP connection to the server’'s FTP control port (21). This (FTP control) connection,

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 114

CONTROL
CONNECTION

=3] beg:n data
eq transter

" | Mast ICPs
start with 2MSS
rwnd after
recerving ACK
Jor SYN=-ACK

stacus

DATA
CONNECTION

g beg:i:n daca
transter

Figure 2.9: File transfer from server to client, using FTP (left diagram) and HTTP (right di-
agram). The diagram for HTTP assumes the congestion window is increased upon reception

of the ACK for the SYN-ACK.

is used by the client to send commands to the server, and by the server to return status
information. In response to a file transfer command, the server sets up a TCP connection
from port 20 to a port at the client side which is specified in the command. An FTP data
connection is used to transfer data in only one direction. The operation of FTP is shown
in the left diagram of Fig. 2.9. Note that the first data segment arrives after about 3 RTT
from the time the control connection is initiated.

As indicated in Chapter 1, FTP transfers are usually larger than for other TCP appli-
cations. They are usually modeled as infinitely large in simulations. However, this tends to
hide problems that are encountered when sending finite size files, which may be significantly
affected by packet loss and TCP’s congestion control mechanisms. In contrast, the relative
effects of these mechanisms are reduced for large file transfers, which benefit from long term

adaptation to network conditions [13].

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 115

29.5 HTTP

In this section, we discuss the way HTTP uses TCP, and compare the two popular HTTP
versions, namely HTTP/1.0 and HTTP/1.1.

One of the design goals of HTTP was to eliminate inefficiencies in FTP, which make it
unsuitable for the short transfers which characterize the Web application. Comparing the
left and right diagrams of Fig. 2.9, where one file is being downloaded using FTP and HTTP
respectively, it is clear that HTTP saves one RTT, needed for FTP to setup the control con-
nection. Furthermore, if the ACK for the SYN-ACK increases the congestion window, as in
most BSD-derived implementations, the HTTP server would start by sending 2 segments.
This avoids a delayed ACK timer, which is typically incurred for FTP transfers from the
server to the client. Therefore, HTTP results in a faster request-response interaction, with-
out requiring state at the server. The TCP connection used by HTTP may be closed after
the transfer is complete (HTTP/1.0 behavior) or kept open and used to transfer other files

if needed (default HTTP/1.1 behavior). We look at the two versions of the protocol in more
details below.

HTTP/1.0

In HTTP/1.0 [34|, each resource (i.e., object within a page) is transferred in a separate
TCP connection, which is closed after the data is transferred!!. This creates a set of prob-
lems, which have been identified and addressed in the literature, notably in {160, 178], and
described below.

The first problem relates to the management of TCP state at servers, where the succes-
sion of many short-lived connections leaves the server with a large number of connections

in the TIME _WAIT state, which, according to the TCP standard, have to be kept for up

''The documented version of HTTP/1.0 ([34]) has no provision for persistent TCP connections. Never-
theless, some implementations of HTTP/1.0 use a Keep-Alive header to indicate a persistent connection,
but this mechanism does not inter-operate with intermediate proxies [136].

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 116

to 4 minutes [190]. This can lead to the exhaustion of the TCP connection state table's
resources at the server [160]. However, most server implementations violate the standard

and remove that state much sooner than specified [177].!2

INDEX PAGE SYN comzcsmrm SN
CONNECTION
SYN-ACK SYN-ACK
ACK ACK
GET HTML GET HTML
REQUEST REQUEST
RTML oL
~2RTT
—
IMAGE

CONNECTION
cwnd 13 a2

e

GET IMAGE
REQUEST

Figure 2.10: Comparing Web page download (HTML file and 1 image), using HTTP/1.0
(left diagram) and HTTP/1.1 (right diagram).

More significant are HTTP/1.0’s network performance shortcomings. Consider the left
diagram of Fig. 2.10, which depicts a Web page download, consisting of an HTML document
with an in-lined picture. After the client downloads the HTML code, it parses it and finds
the locator for the image. It then establishes a connection to download the image. Notice
how two separate connections need to be opened in sequence, each requiring 1 RTT to be
setup. Given the typical small transfer sizes, this overhead can significantly add to the
total latency [160]. Furthermore, the large number of connections increase the likelihood of

loss of connection establishment segments, which require a large default timeout to recover

2For example, the Apache 1.3 HTTP server virtually keeps no connection in this state [31].

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 117

(3 or 6 seconds). In addition, all transfers have to go through the Slow Start phase, and
therefore operate at small window sizes. This not only reduces their sending rate, but also
renders these connections vulnerable to packet loss, as discussed in Section 2.6.1. Moreover,
for TCPs that start with a 1 MSS-sized congestion window, the first data segment sent by
the server when transferring a file is usually not acknowledged immediately by the client,
as mandated by the delayed ACK mechanism (see Section 2.5.2). For Web pages that
contain more than one object, this delay is incurred for each object transfer time. To
counteract these effects, popular Web browsers (e.g., Netscape and Explorer) open multiple
connections in parallel to download different components of a Web page!3. The drawback
of such behavior is that parallel connections are more aggressive than one connection, which
may cause network congestion. Modifications to the use of TCP connections were made in

HTTP/1.1 to address these problems.

HTTP/1.1

HTTP/1.1 [74] introduced several changes to the way HTTP/1.0 uses TCP, motivated by
the desire to improve download times and reduce network congestion, based on work in [209]
and in an early version of [178]. The two relevant changes introduced in HTTP/1.1 are the
following.

First, HTTP/1.1 introduces explicit support for persistent connections between client
and server, to be used as default for all transactions (both for downloading the contents of one
Web page and for downloading different pages on the same server). A persistent connection
is used to transfer multiple resources sequentially, instead of having each separately setup
and tear down a connection.

The second modification consists of allowing multiple requests to be sent within the

same message to the server (“pipelining”), and provides a clear specification of how the

3The maximum number of connections that Netscape opens is 4. Although described as user-settable in
{160], this limit is not currently modifiable. Internet Explorer opens up to 6 parallel connections [91].

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 118

server responses would be separated in order to be identifiable by the client (HTTP/1.0
naturally used the closing of a connection as indication of the end of a response, although
other methods were allowed). Note that a server responds to pipelined requests in the same
order as it received them. Obviously, the client need not wait for a response to a request
before sending a new one. Pipelining makes the best possible use of persistent connections,
since it further avoids extra RTTs. Indeed, it has been observed that HTTP/1.1 without
pipelining performs worse in terms of latency than HTTP /1.0 employing several connections
in parallel [91].

There are many potential benefits to the HTTP/1.1 behavior. Persistent connections can
significantly reduce latency by eliminating the RTTs spent in setting up new connections, as
illustrated in Fig. 2.10. The window size of a persistent connection is able to grow to a large
size, allowing for faster sending rate and better loss resilience. Finally, at the server, there
is no need to fork a new process for each request, an operation that is time and resource
consuming [160]. In Chapter 4, we show that page download times with HTTP/1.1 are
better than with HTTP/1.0 when the network is congested. We find that the large initial
timeout for connection establishment segments plays a significant role in the delays suffered
by HTTP/1.0 downloads. On the other hand, although the use of several connections in
parallel does make the application more aggressive, it is not clear that using one connection
to send all the data will cause less congestion. Indeed, this connection will be able to operate
at a larger window and therefore send larger bursts of data than a few parallel connections.
For example, consider the transfer of a page with 8 10KB embedded images, and assume
that all connections use an MSS of 1000 bytes to simplify the analysis. Using 1 pipelined
persistent connection, a burst larger than 32KB can be potentially generated during Slow
Start. However, 4 connections in parallel can only put a maximum of 16KB at a time.

Pipelining allows a reduction in the number of messages sent in both directions, as well
as in header overhead as requests get aggregated into large segments. This decreases the

total overhead, and should reduce network demand. Experiments with a (rather atypically)

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 119

large Web page have shown significant reductions in the number of packets transmitted (a
factor of 10) compared to HTTP/1.0 and a factor of 3 reduction compared to unpipelined
HTTP/1.1. However, the improvement in latency and the reduction in bandwidth are
found to be more modest [91]. A study of typical Web page sizes in a lossless short RTT
LAN has shown that the reduction in total byte traffic may not be nearly as significant in
such an environment [31|. Furthermore, the improvement in latency obtained through the
use of persistent connections decreases as the user connection speed decreases, and the main
component of round trip time delay becomes transmission time on the link [219]. In practice,
popular browsers still use multiple parallel connections to the same server, even though they
implement persistent connections. This behavior is discouraged by the HTTP/1.1 standard,
which recommends using no more than 2 such connections [74].

The interaction of the modified HTTP mechanisms with TCP congestion control is quite
complex. Some aspects of the mechanisms, as discussed above, play in favor of the modifica-
tions while others have a negative effect on performance. A number of interactions that sap
HTTP/1.1's performance, resulting in performance several times slower than HTTP/1.0,
have been identified and addressed in [101]. We discuss two relevant problems which were
identified and corrected. The first problem results from the interaction of the HTTP sending
pattern with the delayed ACK and Nagle's mechanisms. It occurs when a server response
can only fill an odd number of MSS-sized segments, and the remaining data need to be
sent in a last segment that is shorter than 1 MSS. Thus, this segment will be delayed by
the Nagle algorithm, waiting for the outstanding data to be acknowledged. Given that the
outstanding data consists of an odd number of segments, the client will delay the last ACK,
and the transfer will suffer an additional RTT and delayed ACK timer. This problem is not
encountered in HTTP/1.0 because the application closes the connection after sending the
last segment, and this forces TCP to send all outstanding data, without invoking Nagle's
algorithm!*. The solution to this problem is to disable Nagle. The second problem is related

14This is an implementation dependent interpretation of the procedure to follow when a connection is

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 120

to the effect of the Slow Start-restart mechanism, where a connection that has been idle for
some time (one RTO) sets its congestion window to 1 MSS before sending new data (see
Section 2.6.1). Knowing that an HTTP/1.1 connection idles due to user think time, which
is usually larger than the RTO, it will always perform the Slow Start restart. This defeats
one of the purposes of keeping connections open with the server, which is to preserve a large
congestion window. Possible solutions include replacing the Slow Start-restart specification
by a gradual decay of the congestion window [100], and possibly implementing a rate-based
pacing of new data until the ACK clock is operational [220]. Other potential problems may
occur due to the application level buffering required for pipelining requests. Indeed, the
interaction of buffering at the different layers may result in severe performance penalty, and
has to be carefully designed [101, 157].

From the server design point of view, HTTP/1.1 introduces several performance issues
and complications that need to be addressed. First, the large number of connections in the
OPEN state can considerably slow down the system. Therefore, when new requests arrive
the server has to close some of the open connections. To avoid ambiguity and reliability
problems, a connection is only closed after completely servicing a request. Race conditions,
where a server closes a connection while a request sent by a cliént is on the way, have
to be solved by the client detecting the problem and re-connecting. Servers need to keep
client state and timers to indicate which connections should be kept open. In addition,
intermediate HTTP/1.0 caches and proxies interfere with the server’s detection of HTTP/1.1
enabled clients. This has lead to the recommendation that persistent connections be closed
by clients when the transfer of a Web page is completed {31].

It is not clear yet whether the use of persistent connections is gaining popularity. A
limited study seems to indicate that it is not the case [17], and some researchers still state

that HTTP/1.0 is the dominant protocol in use [31]. In any case, the extent to which a

closed. Closing a connection implies PUSHing the data, as per RFC793, but the specification of Nagle’s
algorithm in RFC1122 does not differentiate between PUSHed or not PUSHed segments.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 121

persistent connection is used depends on the number of embedded objects in a Web page and
the amount of locality in user Web surfing patterns. As discussed in Chapter 1, the number
of embedded objects is typically not very large, and might decrease as better encoding
techniques are deployed to compress images or replace small pictures used to display text
[91]. In addition, several measurement studies have shown that users view a limited number

of pages at a particular site [20, 102, 146].

2.10 TCP Modeling and Simulation

In this section we summarize the main results of TCP modeling efforts, and give recommen-

dations for simulation work with TCP.

2.10.1 TCP Models

There has recently been an increased interest in TCP modeling, for both long and short
transfers. We summarize below the main results from such studies. Note that we are
interested here in models for the performance of TCP connections. Other works have focused
on the empirical derivation of models for the characteristics of TCP application traffic [47,
180, 181). These are useful for the generation of traffic in simulation and performance
studies, and were discussed in Chapter 1.

Several models have been presented for the steady state throughput of long “bulk”
transfers. While the early models covered very simple aspects of the dynamics of TCP
[141, 149, 174], the sophistication and the level of details modeled have consistently in-
creased [139, 176}

The simplest model for TCP behavior approximates the case where a long transfer
is incurring independent random packet loss with probability p. The derivation in [149]
approximates random loss by assuming a packet is lost at regular intervals (i.e., every ;-,

packets). This loss is assumed to be recovered with Fast Retransmit, resulting in an ideal

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 122

Loss Pattern ACK Strategy C |
Periodic Every packet %-—-1.22
1 loss every ‘l, packets Delayed 3=0.87
Random Every packet 1.31
independent with probability p Delayed 0.93

Table 2.3: C parameter values for the simple model of a long TCP transfer throughput,
from [149] and [174].

sawtooth pattern. The throughput achieved by TCP with such an idealized behavior is:

Tbytcs/sec = %‘g'
VP
where p is the loss probability, and C is a constant which depends on the loss pattern
assumed, and whether delayed ACKs are used or not. The different values for C are shown
in Table 2.3) [149, 174]. This equation can be rewritten to give the average TCP congestion
window size as a function of the loss rate:

C
Wpackcts = \/—5

This model does not take into account the possibility of retransmit timeout, and assumes
very simple loss patterns. Given the increased frequency of timeouts as packet loss increases,
it grossly overestimates the throughput as p increases. Therefore, its practical applicability
is limited. However, it gives a general idea of the relationship between TCP’s throughput
and path characteristics (RTT and packet loss).

A more sophisticated model which includes the effect of timeouts and the possible limita-
tion from the receiver window (but does not capture TCP’s behavior during Fast Recovery),

gives the following approximate expression for TCP throughput:

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 123

Winaz MSS MSS
RTT '
RTT‘/ 2P 4 Tymin (1, 3,/3—32) p(1 + 32p2)

Tbytes/scc = min

where Wiz is the receiver window size in packets, b is the number of segments acknowledged
by each ACK (e.g., b = 2 when delayed ACKSs are used), and Tj is the retransmit timeout
value. Note that the timeout value depends on the clock granularity and is computed
differently for different TCP implementations. However, as discussed in Section 2.6.1, it is
possible to approximate it with 1 second (for short RTTs). For larger RTTs, as indicated in
[87], it is possible to use an approximation such as Tp = 4RTT.

This model assumes that loss is correlated within 1 RTT, and that loss in 1 RTT is
independent of loss in different RTTs. Clearly, these assumptions may not hold in all sit-
uations, but have been found to be reasonable in a limited measurement study of Internet
path characteristics by the authors [176].

An interesting application of such models is explored in [87], where an equation-based
congestion control scheme for streaming applications is proposed. The scheme attempts
to approximate TCP’s behavior and prevent long-term congestion in the network, while
avoiding the large sending rate oscillations which are characteristic of TCP. It requires the
receiver to inform the sender of the loss rate suffered during each round trip time interval.
Then, the sender uses the equation above to adjust its sending rate toward the rate which
TCP would have achieved. Noting that the multiplicative decrease does not necessarily
have to be 2 as in TCP, the rate adjustments are purposely made in smaller increments and
decrements than TCP’s, to give a smoother behavior. However, the study does not use real
streaming application traffic (e.g., video) to show the actual performance obtained with this
scheme.

In addition to the models for long transfers, several models for short TCP connections

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 124

have been developed, such as [48, 49]. Short transfers have different dynamics than “bulk”
transfers, which are popular in simulation scenarios, but represent only a small percentage
of the flows in the Internet. In particular, models for short transfers highlight the fact that
these spend most of the time in the Slow Start phase. In addition, they assume that short
transfers incur no loss. A recent model proposed in [49], combines results from both types
of models (i.e., short transfer without loss and long transfer with loss) into one model for
TCP transfer latency. The model uses the same assumptions and follows the same approach
as the model for long transfers in [176], which we described above. The model provides an
approximation for the expected completion time of a transfer, which includes the time spent
in Slow Start, the time lost after Slow Start ends (i.e., either a timeout or Fast Recovery),
the time spent in Congestion Avoidance and the delay from a delayed ACK timer for the first
packet (expected value 100msec for BSD TCP). A similar model which assumes independent
rather than correlated loss is presented in [207]. Loss in the Internet is usually assumed to

be correlated. However, it is assumed to be independent when an active queue management

scheme such as RED is used [176].

2.10.2 Simulation with TCP

The complexity of TCP, the large number of different TCP versions and associated mech-
anisms make simulation work with TCP a non-trivial endeavor. Indeed, the number of
parameters that affect TCP is very large, including connection parameters (e.g., maximum
window size, TCP version, receiver type...), path characteristics (e.g., bottleneck bandwidth,
link delays, buffer sizes...), buffer management mechanisms (drop tail, RED...), traffic char-
acteristics (e.g., file size...) and so on. As a result, simulation work with TCP is prone to
“engineering” where scenarios can be designed to produce different results as needed. It is
therefore crucial to study the behavior of TCP across wide ranges of the various simulation
parameters. In addition, when simulation scenarios have limited randomness, traffic “phase

effects” make small changes in the network result in large changes in the performance of TCP

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 125

connections, and give results that may not reflect reality [75, 76]. These can be addressed
by adding a random element to the traffic, e.g. by inserting a small random delay before
sending ACKs or injecting random low bandwidth traffic (13, 77].

In general, when working with TCP, the following aspects have to be considered (this
paragraph is loosely based on [13]):

First, the particular version of the congestion control mechanisms should be carefully
selected. As discussed earlier, different versions perform differently in the same network
scenario. In addition the TCP version that is most common in the Internet changes as
new versions get deployed with new releases of popular operating systems. Thus, while
TCP Reno used to carry 80% of the traffic a few years ago, it is being gradually replaced
with NewReno and SACK implementations. However, a substantial portion of the traffic
is still carried by older versions as well [177]. The ideal approach would be to understand
and compare the performance of the different TCP versions in the simulation environment
considered.

Second, it is important to incorporate the non-congestion control mechanisms, such as
delayed ACKs and Nagle, which are commonly used in actual implementations. As discussed
earlier, these mechanisms may interact and influence the behavior of TCP, and should be
used or taken into account in simulation work.

Third, simulations should consider the effects of modifications such as large maximum
window size, or increased initial window size. In particular, using a maximum window size
that is small may avoid packet loss in the network and hide problems which may otherwise
occur. In general, the choice of parameters should be carefully considered, and if possible,
a large range of such parameters explored.

Fourth, the application traffic scenario should be realistic. While infinite transfers may be
interesting by themselves, it is important to study the performance of limited size transfers.
These are more prevalent in real life, and exhibit widely different characteristics than long

transfers when sent using TCP. Thus, a large range of transfer sizes should be studied.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 126

Furthermore, accurate models of application behavior are required in order to understand
the performance at the application level. For example, as discussed in the previous section,
HTTP/1.0 and HTTP/1.1 have significantly different behavior and are expected to obtain
different performance in the network. Therefore, models for both should be used. Finally,
TCP’s performance is a function of the congestion caused by aggregate traffic. Therefore,
realistic cross traffic should be used in the simulations. In addition, traffic should be present
on the reverse path to capture the effects of queuing (compression) and loss on the ACK
stream, which are encountered in real networks.

Fifth, the network scenario needs to be carefully studied. Indeed, the buffer sizes and
link speeds need to be realistically chosen or studied across a wide range.

Finally, a number of well-known and not so well-known bugs deviate TCP’s behavior
from what is expected!®. In general, when working with TCP, one should always consider

the possibility of implementation bugs influencing the obtained results.

2.11 Summary

In this chapter, we presented TCP’s mechanisms for reliable data transfer, as well as the
various versions of its congestion control mechanisms. In addition, we summarized the main
results obtained in the areas of TCP performance evaluation and active queue management.
We also discussed the use of TCP by popular applications, namely Telnet, Web and FTP.
We closed with a summary of TCP modeling efforts and recommendations on the use of
TCP in simulations.

In this chapter, our goal is not only to provide the necessary background for the work
presented in the following chapters, but also to help readers working with TCP to avoid some
of the errors, pitfalls and confusion that result from the large number of different versions

and modifications of TCP.
13See [185] for a list of common bugs.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 127

We note that TCP is a highly fluid protocol, particularly when the details of its opera-
tion are considered. Many non-standard modifications and enhancements are independently
added to the various popular implementations. In addition, given the complexity of the
protocol, as well as some imprecision in the specifications, many implementors allow them-
selves the freedom to deviate from the standard behavior, in the benefit of simplicity or
inter-operability with other existing implementations. Therefore the information contained

in this chapter may not apply to every single TCP implementation or version.

CHAPTER 2. THE TRANSMISSION CONTROL PROTOCOL 128

Chapter 3

Selective Flow Control in Switched

Ethernet LANSs

3.1 Introduction

With the predominance of TCP traffic in the Internet, TCP performance has been one of
the most active area of research in networking. Numerous studies have analyzed TCP’s
performance in different types of networks. In particular, significant work has been under-
taken to understand the performance of TCP over satellite links, over wireless links and in
the Internet in general [14, 25, 78, 79, 84, 119, 125, 126, 127|. The performance of TCP
applications in the LAN context has received less attention, perhaps due to the fact that,
traditionally, LANSs have been over-provisioned, relatively small in size and number of users,
and congestion was satisfactorily dealt with by TCP.

Today, the picture is different: with the advent of high performance switching, high speed
(100Mbps, 1Gbps and 10Gbps) full-duplex links and new standards for class-of-service (CoS)
support, selective multicast and Virtual LANs [110, 111, 112, 113}, it is possible to deploy
LANS to a large scale (extended LANs). New data applications have emerged with stringent

delay requirements, such as transaction systems and storage area networks. For example,

129

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 130

in storage area networks, transaction delays must be below 50msec, with some high end ap-
plications requiring delays of a few milliseconds {109]. Furthermore, along with data traffic,
LANs are expected to carry traffic from new multimedia (e.g., voice and video) applica-
tions, which have large bandwidth and stringent delay requirements. In addition, the mix
of full-duplex links with speeds that differ by orders of magnitude introduces rate mismatch
considerations that were not faced previously. Congestion occurs when the demand for net-
work resources placed by the traffic sources exceeds resource availability at some point in
the network [127|. In the LAN context, episodes of temporary congestion may occur due
to the large speed mismatch between links, the burstiness due to TCP’s mechanisms and
to the variability inherent in multimedia (esp. video) traffic, as well as the aggregation of
traffic from different sources. Such situations are referred to as “short-term” congestion, in
contrast to congestion which corresponds to chronic long term network overload.

While TCP’s congestion control mechanisms can prevent congestion collapse by tackling
long term congestion, they do not always result in optimal application performance. In
particular, the effectiveness of TCP’s loss recovery mechanism is limited in the context of
switched LANs. Indeed, the short round trip times in the LAN, which cause rapid window
growth, lead to increased burstiness and buffer loss. Furthermore, the coarse granularity of
TCP’s timer used to detect packet loss typically results in an unnecessarily large minimum
timeout value (idle time), which has a greater relative impact in the context of a LAN than
in the WAN [66, 78, 79|. In addition, the orders of magnitude difference in link speeds that is
possible between different sources leads to a correspondingly wide difference in the burstiness
of the traffic they generate. Since bursty sources are more likely to incur loss at bottlenecks,
they achieve a disproportionately small share of the bandwidth. This fact has been noted
in the work on Random Early Detection (RED, [78]), where it is described as a bias of
Drop Tail queues against bursty sources, motivating the need for random drop queues. We
further investigate these ideas in Section 3.2, through a set of simple illustrative simulation

scenarios, which demonstrate the effects of loss on the performance of TCP transfers in the

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 131

LAN.

In this study, we consider the use of a hop-by-hop flow control' mechanism to address
the problems due to packet loss. Indeed, a flow control mechanism allows the sharing of
memory resources between neighboring network devices, thereby decreasing or eliminating
packet loss in switch buffers. Moreover, if flow control actions propagate toward the sources
of traffic on the LAN, the amount of traffic admitted to the network can be limited. Whereas
hop-by-hop back-pressure may not be a practical end-to-end solution in the WAN, given the
administrative boundaries that limit the scope of such actions, it remains a valid option to
consider in the LAN context. Note that a LAN may be any individual network within the
Internet (e.g., an autonomous system, and ISP domain or a corporate network). The use
of flow control in LANSs is not a new idea, and it has been contemplated since LANs were
introduced. However, Ethernet, currently the most popular LAN technology, did not have a
standard specification for flow control until recently (1997), when a MAC-layer flow control
scheme was standardized for use in (full-duplex) switched Ethernet LANs [L11]|. The design,
benefits and interaction with end-to-end TCP congestion control and video traffic of such a
flow control scheme are addressed in this chapter.

Recent work on back-pressure includes a study reported in [187], which focuses on back-
pressure in the backbone, showing its usefulness in the context of many flows, where the
buffering available at the bottleneck for each TCP connection is very limited (i.e., less
than 1 packet). In this context, TCP’s congestion control mechanisms result in very poor
performance, as connections repeatedly lose retransmitted packets and fall into exponential
timer backoff, which causes extended idle times. The study shows that, by using flow
control to utilize the buffers at upstream switches, the severe shortage in buffer space can
be relieved and the resulting performance problems corrected. Other works demonstrate the

benefits of using a well designed flow control scheme in ATM networks, where it is shown

1We use the terms “flow control” and “back-pressure” interchangeabiy to denote a hop-by-hop mechanism
by which a device can pause the transmission of frames at upstream neighbors.

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 132

to maximize network performance during times of congestion (140, 175]. Studies done in
the LAN context, such as those reported in [195, 223, 224, 225|, are limited to simple, non-
selective back-pressure, and show the improvement it provides in some situations and hint
to the problems that may occur due to head of the line blocking. Here, we clearly identify
situations where such a scheme leads to performance improvements and situations where
it leads to performance degradation. In addition, we consider multimedia networks which
implement the expedited forwarding (multiple classes of service) functionality standardized
in the recent revision of the standard for bridged LANs (IEEE802.1D [110|). In these
networks, different traffic types (e.g., voice, video and data) are mapped to different queues
in the network, which are served by a highest priority first or weighted round robin scheduler.
To address the issues introduced by the support of multiple classes of service, we study
selective flow control schemes which use information, such as MAC address and traffic class,
which is currently not available in the standard control frame. The use of this information
is shown to overcome the limitations of the simple scheme. We also discuss design pitfalls,
to be avoided for an effective and resilient control scheme.

The rest of this chapter is organized as follows. In section 3.2 we illustrate TCP’s
performance problems which are caused by short-term congestion in LANs, by means of
simple simulation scenarios. In Section 3.3 we describe the PAUSE mechanism introduced
in IEEE802.3x, which is the standard flow control mechanism in Ethernet LANs. For the
purpose of this study, we do not limit ourselves to this mechanism; instead, we consider
a more general structure for a back-pressure mechanism in Section 3.4, where we describe
the various components of such a mechanism, and identify the possible variants of each.
We then study the performance of flow control mechanisms which use additional control
information in Section 3.4. We present computer simulations results which show the need
for selectivity in flow control actions, and indicate that class of service and destination MAC
address information should be incorporated in the PAUSE frame specification. We conclude

by summarizing the main findings in section 3.6.

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 133

3.2 TCP’s Performance in LANs

In this section, we illustrate through a set of simple simulation scenarios the problems with
TCP’s performance when short-term congestion occurs in full-duplex switched LANs. We
use the network simulator ns, which implements full-duplez links of configurable speed, and
a non-blocking output buffered model for switches {1]. In addition, ns implements accurate
models for the different versions of TCP’s congestion control mechanisms, the network be-
havior of which faithfully reproduces that of real implementations. In the following scenarios,
we use TCP Reno, which is one of the most popular TCP versions [183]. Nevertheless, in
our discussion, we point to situations where other versions would have performed differently.

TCP’s performance is a complex function of the network configuration along the path of
a connection (i.e., buffer sizes, link bandwidth and propagation time), network conditions
(e.g., nature of cross traffic, other connections sharing the links and buffers), the character-
istics of transfers it carries (e.g., file size) as well as the TCP version itself and its parameter
settings (e.g., receive buffer size, clock granularity, initial timeout value). In the first sec-
tion, we explore different network situations which highlight the interactions of the various

parameters.

3.2.1 Simple Bottleneck

In the first scenario, we use a simple link speed mismatch topology, shown in Fig. 3.1.
The source of traffic is on a 100Mbps link, while the destination’s link speed is 10Mbps,
thereby creating a bottleneck on the slower switch port. To understand the interaction of
the buffer size, the transfer size and the receiver window size (which places a limit on the
maximum burst size TCP can generate), we use the following traffic scenario. The source
transfers a fixed size file to the destination. When the transfer is over, the source starts a
new identical transfer immediately. This means that the throughput achieved on the link
corresponds to the throughput of each transfer, i.e. the inverse of its transfer time. While

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 134

the receiver window size is kept at 64KB (maximum unscaled value), the buffer size on the
10Mbps is varied from 5KB to 70KB and the file size from 10KB to 10MB. We use the
transfer throughput as performance measure rather than transfer time because it provides

a normalized value across the different transfer sizes.

%WMbps()

Figure 3.1: Link speed mismatch scenario.

100 Mbps

In Fig. 3.2, we show the transfer throughput as a function of the transfer size for drop
tail (top graph) and RED queues (bottom graph). Different curves correspond to different
bottleneck buffer size. The main observation in this figure is that two main trends seem to
exist. The first corresponds to the maximum possible throughput (for a buffer size of 70KB),
and the other to a lower throughput to which curves for buffer sizes smaller than 64KB fall,
when transfers exceed a particular size. A closer examination of these drop point finds that
they correspond to transfer sizes of about twice the buffer size. This observation can be
explained by the exponential increase in burst sizes sent by TCP in the Slow Start phase.
Thus, when the transfer size exceeds twice the buffer size, a burst larger than the buffer is
generated during this phase, exceeding the bottleneck’s memory resources. Although TCP’s
congestion control mechanism insure that this congestion does not last for long, it still leads
to packet loss at the bottleneck buffer. Furthermore, given the link speed mismatch, this loss
happens in a burst which is known to typically require a timeout to recover. As discussed
in the previous chapter, the timeout in TCP is usually 1 second or larger, leading to a
corresponding drop in throughput. In fact, the lower curve can be simply and accurately
modeled by including the 1 second delay to the total transfer time for each file, which
otherwise would have been the ideal %, where F is the file size in bytes and S is the

bottleneck link speed in bits per second. In other words:

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 135

8xF
S

throughput = S T %ﬁ

After the timeout, the connection will switch to Congestion Avoidance when its conges-
tion window exceeds half the window size at which loss occurred (i.e., in this case, when the
congestion window exceeds the buffer size). The slower window increase rate at that point
(i.e. 1 packet per window transmitted) avoids the bursty packet loss that occurred during
Slow Start, and caused the timeout. After further loss, the threshold at which the connec-
tion transitions to Congestion Avoidance drops to about half the buffer size, increasing the
time where the connection operates without loss, thus improving its efficiency. Note that the
3KB buffer on the other hand is small enough that the relatively steep window increase rate
for small windows periodically results in multiple packet loss and recurrent timeouts. For
this reason, the corresponding curve shows low throughput for all file sizes. The heightened
significance of coarse timeouts in the context of short RTT LANs has been noted in previous
work, such as [139], where different TCP versions are analytically compared in the context
of a wireless LAN model with Bernoulli loss.

The performance corresponding to the lower curve is significantly worse than what would
have been achieved without loss, and is particularly bad for short transfer sizes. For example,
transfer sizes of 100KB are about 14 times slower with loss than without. In other words, if
this situation were to occur in a transaction system, performance in terms of the number of
transactions per second decreases 14 fold with packet loss. This scenario clearly shows the
significance of timeouts in the LAN context and the large relative impact they have there,
and points to the gains in performance that can be achieved in a network where no loss is

incurred due to short-term congestion. Finally, using a randomized drop function (RED?)

2For the simulations with RED, we use typical parameter values (maxp = 0.1, low threshold 10% of queue
size, high threshold 30% of queue size, queighe = 0.02) [78]. We use the slightly different “gentle” variant of the
drop function, which increases the drop probability linearly between maxp and 1 as the computed average
queue size increases from the high threshold to twice the high threshold, as advised in [86]. For more details

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 136

does not solve the problem, and as seen in the bottom graph of Fig. 3.2, it might actually
make it worse for buffer sizes that did not incur loss in the regular Drop Tail case (e.g.,
70KB). Furthermore, experiments with other TCP versions show that their performance
benefits are lost with RED queues, and their curves become similar to Reno’s.

In a variation on the scenario above, we investigate the effect of round trip time, and
show why, with the short round trips in LANS, the drop in TCP’s performance due to packet
loss is relatively larger than in long RTT WANSs. In Fig. 3.3, we plot the throughput as a
function of the RTT on the path between source and destination in the same topology as
above, for transfers of different length. The buffer size in this scenario was fixed at 50KB.
Thus, the curves for the two transfer sizes below 100KB (twice the buffer size), namely
20KB and 100KB, incur no loss for the shortest RTT and achieve maximum throughput.
Larger files, however, do incur loss and the throughput they achieve is lower than the
maximum possible. As in the previous scenario, the difference between maximum and
achieved throughput decreases as the transfer size increases. Now, as the RTT is increased,
the number of packets that accumulate in the bottleneck buffer decreases. When the RTT
crosses a certain threshold, a sufficient number of packets are “buffered” in the links and
no loss is incurred in the buffer. Then, the throughput of the transfers which had incurred
loss suddenly improves as a result. The increase is more significant for the relatively smaller
transfers (e.g., 250KB to IMB). From this point on, the determining factor for transfer
throughput becomes the RTT. As would be expected, the throughput decreases as the RTT
increases, due to its delaying effect during the initial startup phase of each transfer. Thus,
all transfers start seeing the effect observed for the two transfers that did not originally
see any loss. As the RTT increases beyond 40msec, the throughput decrease enough to be
somewhat comparable with the case where loss occurred.

We note here that for the two scenarios above, the other popular TCP versions, namely

Tahoe and NewReno, fare better than Reno. However, although their recovery following
on RED, refer to Chapter 2.

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 137

for Different Buffer Sizes

FTPs Throughput

Throughput in Mbps

File Size in KB
FTPs Throughput for Different Butfer Sizes

10 - T — T

Throughput in Mbps

File Size in KB

Figure 3.2: Throughput in Mbps of fixed-size TCP transfers for different bottleneck buffers,
plotted against the file size. The top graph corresponds to Drop Tail, the bottom one to
RED.

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 138

FTPs Throughput for Different File Sizes

Throughput in Mbps

. 20KB

L IR L L L L
10 15 20 25 30 35 40
RTT in msec

o

Figure 3.3: Throughput in Mbps of fixed-size TCP transfers for different transfer sizes,
plotted against the RTT.

multiple loss is oftentimes more successful than Reno’s, the improvements are not consis-
tently seen, and the throughput they achieve for different file sizes can be on either one of
the two main curves in the graph for Reno. In the scenarios that follow below, all TCP
versions show similar performance.

In the last scenario of this section, we change the traffic scenario to have the source
S send multiple equal sized file in parallel. The curves in Fig. 3.4 correspond to 100KB
files being sent in parallel, where the number of such transfers is varied from 1 to 20, and
show the aggregate throughput achieved by all the transfers. Different curves correspond
to different buffer sizes. This figure shows that the congestion resulting from multiple
connections in parallel can decrease the utility of the network. In this particular case,

the largest degradation (50% drop) occurs for a 60KB buffer and 4 connections in parallel.

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 139

FTPs Throughput, 100KB file size

L] ¥ ¥ L) L\l L] 13 L]

o
9

e
[

Achieved/Maximum Throughput Ratio
o o ° o
[W 'S [T

[
-

1. 1 L]] L

8 10 12 14 16 18 20
Number of Paralle! ftp Connections

&F
o

i
2

Figure 3.4: Throughput in Mbps of 100KB TCP transfers for different bottleneck buffers,
plotted against the number of parallel connections.

In general, for buffer sizes smaller than half the transfer (50KB), adding connections in
parallel increases the throughput achieved as more connections can be active at times where
others are idle waiting for a timeout. For buffer sizes of 50KB or larger, the throughput is
maximum for one connections and decreases as more connections are added. After reaching a

minimum, the aggregate throughput starts increasing again with the number of connections.

3.2.2 Link Sharing

In the previous section, we illustrated the impact of packet loss on the performance of
TCP connections from a single source going over a bottleneck. In this section, we explore
a different set of issues with TCP’s performance, which arise when traffic from multiple

sources shares some links in the network. The topology we use here is shown in Fig. 3.5.

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 140

g1 J100Mbps 10Mbps Q

8F 10Mbps
10Mbps 10Mbps

Figure 3.5: Link sharing topology.

Source station S1 is on a 100Mbps and is communicating with station D1. Stations S2 is
sending traffic to destination D2. The two source-destination pairs share a common 10Mbps
link.

The traffic scenario we consider first is a follows. Sl is making a number of fixed size
transfers to D1, while S2 is making a long transfer to D2. Fig. 3.6 shows the aggregate
throughput of the connections from S1 to D1 as a function of the file size they transfer.
Different curves correspond to different numbers of such connections in parallel. Two sets of
curves are shown, one corresponds to a T0KB buffer size on the shared 10Mbps link, and the
other to a buffer large enough to avoid loss. The curves corresponding to the T0KB buffer
show a mediocre aggregate throughput across the range of transfer sizes. The throughput
achieved for the long transfer between S2 and D2 is not shown, and corresponds to the
remaining share of the 10Mbps. Such a division of the link bandwidth is clearly unbalanced
and may be counter-intuitive at first hand. One would probably expect the source on the
higher speed link to gain the larger share, and this would have been the case if UDP was
used. However, with TCP, the source on the 100Mbps port is more likely to incur loss, and
therefore more frequently throttles its sending rate. In contrast, the curves without loss
show a more equitable sharing of the resources. Note that if the two sources were on similar
link speeds, the source with multiple connections takes a larger share of the bandwidth, and
can effectively shut down the other source. This is due to the fact that multiple connections
in parallel react less drastically to loss than a single connection.

The elimination of this aspect of TCP’s performance in Drop Tail queues is claimed to

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 141

Throughput with and without Loss, 100Mbps Source

10 M T -

Throughput in Mbps

File Size in KB

Figure 3.6: Aggregate throughput in Mbps of transfers from S1 to D1, as a function of the
transfer size, and for different number of such transfers in parallel.

be an advantage of random drop (e.g., RED). We repeat the scenario above, using RED
queues in the switches. In Fig. 3.7, we plot the throughput achieved by the connections
from the 100Mbps source, the 10Mbps source as well as the total throughput on the 10Mbps
bottleneck link. The top figure shows the throughput for the case where the 100Mbps source
has only one active connection. It is clear that the throughput achieved by this connection is
better than for Drop Tail queues, indicating that RED does indeed help in breaking the bias
seen in the previous scenario. Furthermore, the connections from the two sources achieve
similar throughput when they are both transferring large files. A comparably “fair” sharing
is observed for the case where the 100Mbps source has 5 active connections, as shown in
the bottom graph of the same figure. However, looking at the total throughput seen on the

bottleneck link, it is clear that this improvement comes at the cost of significantly decreased

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 142

aggregate performance, over a wide range of file sizes. This, in addition to the poor results for
one connection shown in the bottom graph of Fig. 3.2, indicate that RED does not provide
a satisfactory solution to the performance problems encountered in the LAN context, and is
not adequate as a LAN buffer management scheme®. Therefore, we do not present further
results for RED queues in this study.

If we reverse the traffic configuration, with S1 making a long transfer to D1 while S2 is
making short transfers, the performance for the transfer between S1-D1 can be even worse.
The throughput of this transfer is plotted in the top graph of Fig. 3.8, for tail drop buffer
of T0KB. As shown by the curves for more than 4 parallel transfers between S2 and D2, this
connection can be effectively shut down for sufficiently large number and file size of these
transfers. The aggregate throughput achieved by the connections from S2 to D2 (bottom
graph), is then equal to the full capacity of the bottleneck link.

3.2.3 Addressing TCP’s Performance Issues

In the scenarios presented earlier, we illustrated some of the TCP’s performance issues in the
context of switched LANs. The problems identified above are due to the loss of packets in the
network, caused by high link speed mismatches and traffic burstiness. Several approaches
for addressing these problems can be considered.

The first, and the most obvious, would be to increase the buffering resources in the
switches, particularly on low speed links. A large enough increase would reduce the occur-
rence of buffer overflow and lessen its negative impact on application performance. However,
buffer increases might be defeated by TCP’s tendency to utilize all available buffering in the
network. Indeed, a long enough TCP transfer that does not incur loss will eventually have a
receiver window worth of data outstanding, i.e. buffered in the network. With the increase

in TCP implementations supporting and using large windows [17], this amount can be very

3In fact, as we show in the following chapter, extensive simulation work in the WAN context fails to show
any perceptible user-level benefits to RED queues compared to Drop Tail.

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 143

Throughput with RED Queues, 1FTPs for 100Mbps Source
10 T ” T

Throughput in Mbps

0
2 10° 10
File Size in KB
Throughput with RED Queues, SFTPs for 100Mbps Source

Throughput in Mbps

! 10° 10° 10*
File Size in KB for 100Mbps Source

Figure 3.7: Aggregate throughput of 1 (top figure) and 5 parallel (bottom figure) transfers
from S1 to D1, and for the connection between S2 to D2, as a function of the transfer size

between S1 and D1, for RED queues.

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 144

Throughput on 100Mbps Link for Different No. of Connections on 10Mbps Link

L ¥

Throughput in Mbps

10°

File Size in KB
Throughput on 10Mbps Link for Different No. of Connections
B — o “" —— —

Aggregate Throughput in Mbps

10

File Size in KB

Figure 3.8: Throughput in Mbps of transfer from S1 to D1 (top graph), and aggregate
throughput of transfers from S2 to D2 (bottom graph) as a function of the transfer size
between S2 and D2, for a different number of such transfers in parallel.

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 145

large. While a connection with a large amount of data outstanding may perform well, even
if it incurs some loss, the performance of other connections sharing network buffers would
be significantly affected by packet drops due to overflow, as we saw above. Therefore, it is
doubtful that buffers can be made arbitrarily large, enough to prevent loss. Furthermore,
the increase in queuing delays associated with large buffers make such solutions inadequate
for networks intended for high speed transfers. Finally, increasing buffering resources comes
with a corresponding increase in equipment cost.

Another solution would be to tune TCP’s parameters for high performance in the short
RTT LAN environment. In particular, the receiver window, the timer granularity, minimum
timer value and the number of duplicate ACKs needed to trigger fast retransmit can be
reduced to decrease the maximum burst size and the time it takes for lost packets to be
detected and retransmitted. However, such tuning may be time consuming, and may require
different parameters to be used depending on the location of the end hosts, increasing the
management cost and the complexity of deploying TCP/IP solutions. In fact, this would
negate one of the main reasons for using these solutions in new application areas. In addition,
modifications to TCP’s congestion control mechanisms which increase its aggressiveness are
not well studied, and may have unforeseen negative repercussions on the state of the whole
network.

An alternative to increasing buffer sizes in switches and modifying TCP’s mechanisms, is
to more efficiently utilize the buffering resources distributed in the network, through the use
of a flow control mechanism. By keeping the queue sizes small, this solution does not have
the disadvantages of putting large buffers in the network. The design, use and performance
of such a scheme are the subject of this study. We move in the following section to describe
the standard flow control mechanism for switched Ethernet LANs, which is the baseline

mechanism to which we compare the performance of other schemes.

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 146

3.3 IEEE 802.3x Pause Frame

In this section, we discuss the motivation behind the use of flow control in LANs, and
describe the current (IEEE802.3x) standard for flow control in switched full-duplez Ethernet
networks.

With the order of magnitude increases in Ethernet link speeds, and given that they’re not
always accompanied with comparable increases in processing power, some network devices
may not be able to sustain input at line rate for an extended period of time. This was
particularly the case in 1997 as the Gbps Ethernet standard was close to completion*. For
this reason, and in order to allow devices (switches or user stations) to throttle upstream
senders, and prevent them from overrunning their input buffers, a new “PAUSE” control
frame was standardized by the IEEE. The specification appears in an annex to the standard
for full-duplex Ethernet, which is a more appropriate context for such a mechanism than
half-duplex. The PAUSE frame provides means by which a device can pause the transmission
of frames at upstream ports for a specified period of time. The purpose of the scheme is to
allow switches with limited memory resources to be built, without resulting in large frame
drop rates. However, the scheme is not intended as a replacement to end-to-end congestion
control (e.g., TCP) or as a solution to long-term congestion [201]. In fact, different flow
control mechanisms had been available in several commercial products before the common
standard was introduced by the IEEE.

To carry PAUSE messages, IEEE802.3 created a new MAC frame type, called MAC
Control (Ethernet Type 8808) and defined the PAUSE frame as the first such control frame
(opcode 0001). The format of a PAUSE frame is shown in Fig. 3.9. The destination
address of the frame is that of the port to be PAUSEd, or a reserved multicast address

(01-80-C2-00-00-01). PAUSE frames are not forwarded by Ethernet switches.

*In fact, most user systems are still either not able to process TCP traffic at Gbps speed, or would fully
utilize their processor cycles for that. This has motivated the need for TCP accelerator cards, which offload
the main system processor.

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 147

68 [Destination Address -]

- (01-C2-80-00-00-01)]

68 | _ Source Address _

2B [Type (8808) 7

2B — Op code (0001) =

28 [Pause time in slots]
428 Padding (must be 2ero)

Figure 3.9: The IEEE802.3x PAUSE control frame format.

The mechanism operates as follows. The PAUSE frame indicates a period of time (a 16
bit field) where transmission is to be interrupted, specified in terms of Ethernet slot times
(512 bit times). Thus, on a 10Mbps link, the maximum PAUSE duration which can be
specified in one frame is about 3 seconds. Upon the reception of such a frame on a port,
a device would initialize a timer with the specified period, and stop transmission of frames
on that port. The switch resumes transmission on the port after the expiry of the timer.
The timer is re-initialized by any subsequent PAUSE frame that is received (i.e., the current
value is overridden with the new value), and is canceled by a PAUSE frame with a pause
time of zero. The standard requires that stations which implement the mechanism stop
transmitting new frames 1 time slot after the reception of a valid PAUSE command. The
current frame transmission, if any, is not to be interrupted (i.e., no preemption). A PAUSE

frame is the only type of frame that can be sent by a PAUSEd device [214].

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 148

The IEEE802.3x standard does not require devices to generate or comply with PAUSE
frames. Currently, this capability is negotiated between the two ports on a full-duplex link
[201]. A study of commercially available equipment found that the most popular switches
do not generate PAUSE frames when one port is congested [169]. The reasons given by the
vendors for not using flow control range from concerns about its effects on flows with quality
of service requirements (low delay in particular) and fear of propagating congestion due to
head of the line blocking. Other vendors indicated that their equipment would send PAUSE
frames only when the whole switch is congested, and at that point, the frames are sent on
all ports. As we show with simulation scenarios in Section 3.5, these concerns are perfectly
legitimate. Indeed, our simulation results show that, for the flow control mechanism to

avoid these situation, it has to be selective, e.g., act on Class of Service and MAC address

information.

3.4 Flow-Control Scheme

Having described the IEEE802.3x standard for flow control, we identify in this section the
different components of a generic flow control scheme, which does not limit itself to the
specifications of the standard. We describe the different possible implementations for each
component, and discuss the choices we make in this study. A flow control mechanism has
three components: (i) congestion detection, (ii) flow selection and notification, and (iii)

action, which we examine in turn.

3.4.1 Congestion Detection

A LAN device that is to initiate flow control must implement a monitoring mechanism,
which detects and signals the occurrence as well as the end of congestion. A switch has
three resources which may become over-subscribed at any time, namely link bandwidth,

processing power, and buffer memory. When any of the three resources is in shortage, the

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 149

3. Action

10

2.2. Notification

1. Congestion
detection

\s
hadie
- ————
- e e—
-
-
-
-

Upstream switch ~

Switch with congested port

Figure 3.10: Components of a generic flow control scheme.

switch is considered to be experiencing congestion. While it might be possible to monitor
all three resources, one is able to exploit the fact that congestion ultimately leads to larger
queue sizes at some of the switch’s ports. Therefore, the simplest way to detect congestion
is to monitor the current port buffer occupancy.

Furthermore, a flow control scheme in the LAN, which has for goal to eliminate packet
loss due to congestion, should be highly reactive. Thus, in order to rapidly tackle impending
congestion, we use the instantaneous queue size as an indicator, as opposed to computing
an average over some period of time (e.g., such as in RED), which introduces a time lag in
the scheme’s reaction to congestion.

Without loss of generality, we assume that output buffering is used in the switches® and
the congestion detection is performed at the output buffers. We use a simple threshold-based
detection mechanism. Thus, with every buffer are associated a high threshold and a low
threshold. When the buffer occupancy at a port exceeds the high threshold, that port is
considered to be congested. The high threshold needs to be set low enough for the buffer

to handle the packets that are received before the control actions take effect. Congestion

SIn fact, this is true for the majority of commercially available switches [169].

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 150

is considered to be relieved when buffer occupancy falls below the low threshold. This
threshold needs to be high enough to prevent starvation before control actions are reversed.
As discussed in the following section, the threshold margin defined as the difference between
the high threshold and low threshold, plays a significant role in the performance of the
scheme. It determines the frequency of control messages, as well as the time span of the
control actions. A small threshold margin would result in a large number of control messages
being exchanged at times of congestion, while a large margin can be detrimental to time-
sensitive traffic. The threshold margin also plays an indirect role in the sharing of bandwidth

among different incoming links, as we show in Section 3.5.

3.4.2 Notification

When a device experiences congestion or is no longer congested, it has to notify other devices
of the fact, asking for control actions to be performed or canceled, respectively.

There are several possibilities to consider concerning the choice of devices to notify. For
example, a switch experiencing congestion at some output port could only notify the devices
that are currently sending to the congested port (as opposed to notifying all neighboring
switches). This choice can clearly influence the performance of the control mechanism. For
the present study, we assume that the output buffered switches do not distinguish between
input links. Nevertheless, for any of the scenarios we consider, one would be able to infer
the performance that would be achieved if switches were to distinguish between input ports.
In our discussion, we comment on this whenever applicable.

Similarly, several possibilities exist as to the information that is included in the notifi-
cation messages sent. Possible information that could be used to identify a MAC flow is
the class of service of the congested buffer or MAC address information. We present in this
study a comparison of schemes which provide different types of notification information.

The schemes we examine are discussed below.

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 151

e A “simple” scheme, where no specific information is provided to discriminate between
the flows that are involved in the congestion and others that are not. In this case, all

traffic sent toward the congested switch will be blocked.

e A “class-of-service-based” scheme, where the class of the congested buffer is communi-
cated to the neighboring switches. Then, control actions would be restricted to traffic
which belongs to the class of service that is experiencing congestion, allowing other

classes of service to proceed unhindered.

e A “destination address-based” scheme, where destination MAC address information is
made available by the congested device to the other switches®. In this case, before the
notification messages are sent, the switch needs to determine the set of flows which have
to be controlled. Two interesting possibilities can be considered, the first is to select all
the flows that go through the congested port, and the second is to randomly choose one
or several of them to be controlled. The second method tends to single out the flows
that have the largest numbers of packets in the buffer and thus are the main cause
of congestion. We comment on the difference in performance and the implementation
implications of these two techniques in Section 3.57. In our simulations, all flows that
are found in a congested buffer are controlled. Note that this scheme could include

class of service information as well.

3.4.3 Control Actions

When a switch is notified of congestion occurring (or ending) at a downstream device it has

to perform control actions that would alleviate the congestion (or proceed to reverse the

SNote that this information is available in the switch. All MAC addresses reachable through a given
port can be obtained from the filtering database and, alternatively, the contents of the congested buffer can
be examined and the destination addresses extracted from the packets that are in the buffer. The second
method avoids unnecessarily sending control frames for destinations that have no active traffic.

"Note that the difference in operation between the two methods depends on the location of the congested
buffer. The difference would be minimal close to the edges of the LAN, where switches tend to have one
station per port.

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 152

control actions taken previously). Such actions include blocking/unblocking traffic destined
to the device, or controlling the transmit rate.

In this study, we consider schemes where the control actions and reverse actions are
transmission stopping/resuming, respectively, as in the standard. For such actions, several
control message formats are possible. For example, the control messages sent could explicitly
indicate the time period (in absolute time or in transmission slots) over which the actions
are to be performed as in the IEEE802.3x standard. Alternatively, control actions may be in
effect until messages that explicitly cancel these actions are sent (we use this last format in
our simulations). While these two formats are functionally equivalent, with any one of them
capable of emulating the behavior of the other, the number of messages they generate in
different situations may differ. In particular, at times where control actions are required for
long periods of time (larger than the time limit specifiable in one control message), the first
scheme needs to resend the control messages and results in more transmissions of control
frames. Conversely, the second scheme is more vulnerable to malfunctioning devices, which

might perpetuate control actions.

3.5 Flow Control Simulation Scenarios and Results

In this section, divided into three parts, we present simulation results for the different
flow control schemes. For simulations with different traffic types (i.e., video and data), we
implemented class-of-service functionality in a purpose built simulator, where each output
port contains a separate queue for each class of service. The scheduling of these queues does
not play a significant role in the scenarios we consider, and we assume that the queues are
serviced on a highest priority first basis (video being higher priority than data). We also
implemented the components for the different flavors of hop-by-hop flow control described
in the previous section. We use a buffer size of 1 MB at 1 Gbps ports, 500 KB at 100
Mbps ports and 70 KB at 10 Mbps ports. These values are comparable to the ones used

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 153

in commercial switches at the time of the study. Buffers at source stations are assumed to
be very large, corresponding to control actions throttling applications. For all simulations,
unless otherwise noted, we use a high threshold of 80% and a low threshold of 70% for
congestion detection, values that appeared to work well in practice for our buffer sizes.

In the sections below, we first consider three common situations that show the benefits
in terms of throughput and fairness of back-pressure in its most simple form, such as the
mechanism defined in the [EEE802.3x standard [111]. Conclusions for other, structurally
similar but more complex topologies, can be inferred from the results shown here.

Next, we study situations where the head of the line blocking resulting from control ac-
tions has a significant negative performance impact on connections which do not participate
in the congestion. A set of scenarios is presented to illustrate the need for back-pressure to be
based on destination address information, and on Class of Service information in networks

that implement traffic class differentiation [110].

3.5.1 Non-Selective Flow Control

In this section, we present a number of scenarios where the simple flow control scheme
improves the performance of TCP connections. We do not consider scenarios with data
traffic using UDP, which does not have the adaptive properties of TCP, and would therefore
clearly benefit from flow control. Indeed, bursty UDP sources may incur large packet drop
rates when the available buffering in the network does not suffice, a problem which might
require application-level changes to overcome. In contrast, the loss rates for TCP traffic
tend to be low, owing to TCP’s adaptiveness to path characteristics. However, the effects of
buffer loss do translate into lower TCP throughput and, as illustrated in Section 3.2, while
TCP is able to limit long-term congestion by reacting to loss, it suffers from fairness and
efficiency problems that are particularly observable in the switched LAN context. We revisit
these ideas below, and show the performance improvements made possible by the use of a

flow control mechanism in the network.

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 154

As discussed in the previous section, we consider a flow control mechanism designed
to eliminate packet loss due to buffer overflow. Avoiding packet loss helps achieve high
network utilization. Indeed, once TCP has increased its window size to the maximum value
(i.e., receiver buffer), its transmission rate corresponds to the maximum rate possible for
the connection, since it injects packets in the network at the same rate as packets are
being removed on the destination end (this is referred to as the self-clocking property of
TCP [119]). Thus, by providing enough buffer space in the network devices (switches and
stations) to hold the burst of packets generated during the initial Slow Start phase, it is
possible to achieve optimal performance. In this context, back-pressure can be seen as a form
of sharing of buffering resources across multiple devices, thereby increasing the resources that
are available to a congested one. Furthermore, by propagating the control actions toward
the sources, the applications generating the traffic can themselves be throttled, limiting the

load offered to the network.

Link Speed Mismatch

As shown in Section 3.2, TCP’s burstiness causes short-term congestion at a point of link
speed mismatch. Refer to the configuration depicted in Figure 3.1. We consider that server
S is sending a number of files using parallel TCP connections to a client station D through
the switch. The graph in Figure 3.11 shows the throughput achieved on the path between
source and destination as a function of the number of TCP connections that are sharing the
path, for selected file sizes (solid lines). It appears that about half the maximum achievable
throughput is lost as connections are added on the same path, which is undesirable. The rea-
son for throughput loss is the merging of bursts from multiple connections into a larger burst,
which cannot be accommodated in the 70 KB buffer. The packet loss at the 10Mbps port is
then translated into throughput loss by TCP’s timer-based congestion control mechanisms.

As expected, with back-pressure, the control actions allow the elimination of buffer loss,

thus achieving maximum throughput on the 10 Mbps link (dashed lines).

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 155

tcp—4-8, CCTRL NY, bt 70KB, ht 80, t 70

[
2
3
e
5
2
2
8
£
a 4F
a
o
3.-
x 200 KB file
+ 400 KB file
2t . 800 KB file
. 1 MB file
ik o 10 MB file
o 1 I3] 1 L L 1 J
1 2 3 4 5 [7 8 9

Number of TCP connections

Figure 3.11: Link Speed Mismatch scenario: achieved throughput versus number of TCP
connections.

Traffic Merging

Throughput loss due to congestion may also be observed when all link speeds are equal.
Consider the scenario shown in Figure 3.12, where a number N of different stations use one
TCP connection each, to send files of equal size to the same destination station D.

As a result of the burstiness of the traffic sent by TCP and the merging of bursts from
several connections, the 70 KB buffer at the 10 Mbps output port to the destination station
may overflow, resulting in packet loss. We show the resulting aggregate throughput achieved
on the link to the destination in Figure 3.13. Again, implementing back-pressure provides a
significant improvement in performance (dashed lines). We assume here that sources react to
flow control messages (more on source control later in this section). As a result, the aggregate

throughput obtained when control is enabled is the maximum achievable throughput. Other

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 156

S1

10 Mbps
O
10
Im """‘@
: 70KB

Figure 3.12: Traffic Merging Scenario.

results have shown that for a smaller buffer size (e.g., 50 KB), the high threshold has to be
set at a lower point (e.g., 70%) for packet loss to be eliminated, since in a topology where
packets merge from many input links, as many packets may be sent in parallel before the
control actions take effect. Therefore, the threshold settings need to be carefully chosen

when deploying the scheme.

Fairness Issues

In this section, we address the problem of the “bias” of Drop Tail queues against bursty
sources, which we discussed in Section 3.5. We show that, in addition to improving the
performance of TCP connections, back-pressure can reduce the unfairness that results from
that bias. Consider the scenario shown in Figure 3.14, which we have already seen in
Section 3.2. Server Sl is sending a number of files to D, using parallel TCP connections. $2
is sending one long file (equivalent to an infinite supply of data) using a TCP connection to
the same destination. As in the scenario of Section 3.2, TCP source S1, being on a 100 Mbps
link, is “burstier” than S2 and suffers more loss at the 70 KB switch buffer. The aggregate
throughput achieved by Sl1 is shown in Figure 3.15. Without flow control (solid lines), the
throughput from S1 to D is very low, in the order of a few 100 Kbps for all the file size
values and number of connections shown. On the other hand, the connection from S2 is

using the remainder of the bandwidth on the 10 Mbps link. Again, the resulting division of

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 157

tcp-4-4, CCTRL YN, bf 70KB, ht = 80, it = 70

[-3
2
3
£
g
3
£
8 4
a
3—
x 1
2+ + 3
. 5
1+ . 7
o 9
0 L i L L i 1 L ') - J
100 200 300 400 500 600 700 800 900 1000

File Size in Kbytes

Figure 3.13: Traffic Merging Scenario: aggregate throughput versus file sizes, for different
numbers of sources.
the bandwidth is clearly unsatisfactory.

The dashed lines in Figure 3.15 shows the throughput obtained for the aggregate flow
from S1 to D when back-pressure is used (the connection from S2 to D gets the remaining
bandwidth). In this case, the division of bandwidth is more balanced. For large files and
many connections the throughput ratio is about 8 to 1. This ratio is directly related to the
threshold margin and the format of control messages, as follows. When stations are told to
resume transmission, S1 can send packets 10 times faster than S2 and is likely to fill the
buffer space corresponding to the threshold margin, during the time where S2 would have
sent one packet. The division of bandwidth can thus be altered by using a smaller threshold
margin (the share of S1 will decrease), by sending different PAUSE frames on different links

(e.g., resuming one link before the other), or by using a different format for control messages,

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 158

100 Mbps

10 Mbps
11

70KB

10 Mbps

Figure 3.14: Input Link Speed Mismatch Scenario.

tcp-4-11, CCTRL YN, obj 1, bf 70KB, ht = 80, It = 70
10 . .

PR S Radeat e i R e e e
ot o--TRIIZYIIT S s, 2
I
l,/’ s -P“"’(
I'd
’
) e
’
;7 ® ’
§ y 7 ’ -
’ -
’ - -
< 6Frr -, -
c e e
= | v -
-
I‘ f "’
5F <=
/ x
a 4p P
3} o

Figure 3.15: Input Link Speed Mismatch Scenario: aggregate throughput from S1 to D
versus the file sizes, for selected numbers of connections (solid lines: without back-pressure,
dashed lines: with back-pressure).

which would specify the number of packets that each incoming link can send. In contrast to
the throughput obtained when the buffer size was increased (refer to Fig. 3.6), the division
of the bandwidth among the incoming links can be directly controlled by adjusting the flow
control parameters. This is one of the advantages of flow control over increasing buffer sizes.

From the scenarios above, we conclude that a MAC layer mechanism can address the

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 159

=0
=_@

Figure 3.16: Destination Address-Based Differentiation.

performance degradation due to transient congestion by reducing or eliminating packet drops
during such times. The performance gains shown above are expected in situations where
the controlled flows have similar congestion levels (e.g., similar file sizes, similar number of
connections, etc...). As we examine different situations in the following parts of this section,
we show how such a non-discriminating mechanism could lead to significant performance

loss.

3.5.2 MAC Address-Based Flow Control

In this part, we look at situations where the asymmetry of the topology and/or the traffic
conditions results in performance degradation when a non selective flow control scheme is
used. These situations suggest the need for control to be performed based on destination

address information.

Unnecessary Control

In this scenario we show how control actions improve the performance of the most congested
path, but degrade the performance of the others. Consider the scenario shown in Figure
3.16. Data server Sl is sending a number of large files to station D1, using a number of
parallel TCP connections. Server S2 is sending files of size 32 KB to D2 and 100 KB to D3,
using a single connection each. The aggregation of many connections between S1 and D1

creates congestion on their path, while the S2-D2 and $2-D3 paths are not congested.

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 160

tcp-3-17, CCTRL N, ht 80, 1t 70

0
g
=
€
3
3
£
s
a
3k
2t x 32 KB file
+ 100 KB file
1+ . 1G8 file
o 1 L I L L L - 1 i 3 3
s 6 8 10 12 14 16 18 20

Number of TCP connections

Figure 3.17: Destination Address-Based Differentiation, Scenario 1. Throughput achieved

for each destination, versus the number of TCP connections between Sl and DI, without
back-pressure.

Without back-pressure, the 32 KB and the 100 KB connections® perform well (Figure
3.17), while the aggregate throughput for the S1-D1 connections is well below the maximum.
In contrast, when back-pressure is enabled, the aggregate of S1-D1 connections achieves
maximum throughput. However, the control actions due to congestion on its path results in
a perceptible loss of throughput (e.g., more than 50% for the 32KB transfer) for the other
two connections (solid lines, Fig. 3.18). This problem is due to the difference in link speeds
between the sources. Indeed, repeating this scenario with all three sources on 100Mbps links,

shows that the non-selective flow control does not hurt the non-congested connections.

3These connections cannot reach the maximum achievable throughput given the small file sizes, the

inter-file delays, the averaging procedure for calculating the throughput, as well as the startup procedure of
TCP.

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 161

ot *- 1GB file, simple and destination MAC address flow control
\\ o
AN .’
8r \ ?‘
PP AU U I G S ¥-+—+
L { 100K8ﬁlenoﬂowcontrollde; MAC
7r \ ’_‘
@ \ "*-‘—”‘
-3 168ﬁb.noﬂowcongo?
= 6F ' . 100KB file, simple fiow control
< 3 4 + - +
5 p--n--n--n-‘-n- r-x—-r-—u--u--'-—-u--n K — A= K= M- W — 8= K
g sk v o 32K8 file, no flow control / destination MAC address fc
g '/
£ »
a 4F
3
3-
32KB file, simpie flow control
2—
1-
0 i 1 L § 1 L L. L J —
2 4 6 8 10 12 14 16 18 20

Number of TCP connections from S1 to D1 (1GB File)

Figure 3.18: Destination Address-Based Differentiation, Scenario 1. Throughput achieved
for each destination, versus the number of TCP connections between S1 and D1, for with
and without back-pressure (simple and destination MAC address based).

When control actions differentiate between destination addresses, the effects are elimi-
nated: the connections between S1 and D1 achieve maximum throughput while the S2-D2
and S2-D3 connections achieve the same throughput as without flow control (dashed lines,
Figure 3.18).

Note that if the switch could distinguish between input ports, and therefore would just
control the link from which traffic going through the congested port is incoming, the control
actions would not have negative effects in this particular scenario. However, since it is
probable that some packets (e.g. low bandwidth broadcast traffic) would arrive from all
links to the congested buffer, the differentiation between input links based on this criterion

is not always possible.

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 162

tcp-3-17, CCTRL S, ht 80, 1 70

Data throughput in Mbps
(2
]

x 32 KB file
1 + 100 KB file
. 1GB file
c 'l 1 5) . L L L L /] 3
2 4 1 8 10 12 14 16 18 20
Number ot TCP connections

Figure 3.19: Throughput achieved for each connection, versus the number of TCP connec-
tions between S1 and D1, with non-selective back-pressure and S1 non-responsive.

A more serious effect of using simple control is the added vulnerability to anomalous
behavior of LAN devices. The effects on LAN performance of malfunctioning or non-
conforming devices are amplified and propagated by non-discriminating control. To illustrate
this idea, suppose that traffic sources did not respond to control messages. Then, when con-
gestion is detected, source S1 keeps sending packets, while S2, which is behind a switch,
has its connections blocked in that switch. The result is the idling of the queues used by
connections from S2 and the associated loss in throughput, as shown in Fig. 3.19. Therefore,
some resilience to such behavior has to be built into the control scheme. There must be
a way to disable flow control on a port if it appears that no response is obtained on some
flow, in order to allow others to compete for the bandwidth. It is also possible to reduce

the impact of such a flow by performing control based on destination address, thus reducing

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 163

Figure 3.20: Destination Address-Based Differentiation, scenario 2.

the harmful effects of blocking on connections going to different destinations. However, this

does not eliminate the effect of the flow on other traffic destined to the same address.

Sharing of Upstream Resources

In this scenario, we study the effects of of congestion on the path of a flow on others when
non-selective control is used. We show how the sharing of upstream resources can lead to
performance loss for these flows. Consider the scenario in Fig. 3.20. Server Sl is sending a
number of files to D1, using parallel TCP connections. On the other hand, S2 is sending a
long file to D2. In this case, the path from S1 to D1 has a link speed mismatch while the
one between S2 and D2 does not. Therefore, the former is congested, while the latter is not.

The aggregate throughput achieved between S1 and D1, when no flow control is per-
formed is similar to the one shown in Figure 3.11. We do not show the throughput for the
connection between S2 and D2, which does not incur any loss and therefore achieves the
maximum throughput possible.

When back-pressure is enabled, the connections from S1 to D1 achieve the maximum
throughput possible on the 10 Mbps link (results not shown). However, the unnecessary
control of the connection from S2 to D2, due to its sharing of the 500 KB buffer with the
S1-D1 connections, results in a loss of throughput, which is a function of the number of
these connections and the file sizes they transfer. As shown in Fig. 3.21, the throughput
loss increases with the number of connections and the file sizes sent from S1 to D1, and can

be very severe, as S2-D2’s share of the buffer space decreases (solid lines). This effect can

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 164

tcp-4-13, CCTRL Y, obj 1, bf 70KB, ht = 80, it = 70

Data thvoughput in Mbps

S
100 200 300 400 500 600 700 800 900 1000
File Size in Kbytes

Figure 3.21: Destination Address-Based Differentiation, Scenario 2. Solid lines: throughput
achieved between S2 and D2 versus the file size used in the connections between S1 and
D1, for selected numbers of such connections, with “simple” back-pressure. Dashed lines:
throughput achieved between S1 and D1 for destination-address-based back-pressure.

be eliminated if destination address-based control is used, allowing both flows to achieve
the maximum link utilization. The dashed lines in the same figure show the throughput
achieved between S1 and D1 in this case. Again, this scenario illustrates the fact that, when
non-selective control is performed, the most “congested” path (i.e. the one with the largest
link speed mismatch) dictates the performance of the others.

While the destination address-based flow control scheme was shown to be a solution for
the range of traffic explored above, it may fail to provide optimal performance if it is not
well implemented. For example, if the amount of buffering needed is such that the 500KB
buffer usage exceeds the high threshold, both sources will be controlled, resulting in some

throughput loss for D2-S2. Note that this is a situation where a random selection of flows to

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 165

control is useful. Indeed, one would expect that if the flow to control is randomly chosen out
of the flows found in the queue, it would single out the S1-D1 flow. However, this method
inherently cannot guarantee the expected behavior, given its stochastic nature. The solution
for this problem is to prevent the buffer usage of packets belonging to controlled flows from
reaching the high congestion threshold, e.g., by limiting it to the low congestion threshold.
In fact, to take this idea to an extreme, it would be possible to propagate the PAUSE frame
toward the sources of traffic shortly after it is received. For example, switches would just
wait for a short time, which would potentially allow them to aggregate information from
multiple PAUSE frames into one. This behavior is particularly interesting for switches in
the core of the network, where the number of flows going through each port can be large,
and the complexity associated with destination-based control may be prohibitive. Thus,
the controlled flows would not affect other flows in the network, and the mechanisms for
selective transmission would only be needed in the edge devices (esp. in source stations),
which should be able to afford the additional complexity involved. In this case, the threshold
margin used for detecting congestion should be chosen large enough to limit the number of
flow control frames that are generated and sent throughout the network. Furthermore, using
source and destination MAC address information might be helpful in limiting the region of
the network where such frames are propagated to the path(s) from the congested destination
toward the currently active source(s). Clearly, a trade-off exists in this situation, where it
might be preferable to ignore source address information for a highly popular destination
(e.g., a default router). It appears therefore that a flexible scheme, where the flow control
can be performed with an arbitrary combination of source, destination MAC address or CoS
information, might be the optimal solution.

In conclusion, it appears that failing to discriminate between groups of flows can result
in severely reduced throughput for the ones which are unnecessarily controlled. In addition,
the method for the selection of flows to control plays an important role. If all flows going

through a buffer are selected when congestion is experienced, then it is important to place a

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 166

data
-———>
video

10 Mbps

Figure 3.22: Multimedia traffic scenario. Source Sl is sending 200KB files in parallel and
S2 is sending a video stream.

limit on the amount of buffering space that can be used to store blocked packets at a given
port. Otherwise, the propagation of congestion can result in reduced performance even when

the destination MAC address is used to distinguish flows.

3.5.3 Traffic Class-Based Flow Control

In the previous parts, we looked exclusively at scenarios with data traffic, which is relatively
delay insensitive. If time sensitive traffic, such as video, is sharing the same links as data
traffic, then the delaying effect of control actions becomes an important factor. Here, we
attempt to answer the following questions: what are the situations where implementing
back-pressure may be harmful to delay sensitive traffic? Then, is class differentiation in
back-pressure necessary?

Figure 3.22 shows a scenario where the effect of non-discriminating control measures on
video packets is particularly severe. S1, a data server, is sending 200KB files to D, which
is downloading a video stream from S2. We use a a real video trace obtained from a scene
in the Star Trek movie, encoded with an H.261 constant quality variable bit rate CQ-VBR
encoder. The resulting stream, when packetized, has an average rate of 1.5Mbps.

When no back-pressure is performed, the video traffic does not suffer from any delays.
However, the data throughput achieved is well below the maximum, as was shown in previous
sections. The video packet delays are shown in Fig. 3.23. Although video has priority over

data and is using a separate buffer, it is very severely delayed by the actions resulting from

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 167

Complementary cdt of packet delays
S,
E

0 0.1 02 0.3 04 0.5 06 0.7 08 09 1
Delay in seconds

Figure 3.23: Multimedia traffic scenario: video packet CCDF, with “simple” back-pressure,
for selected numbers of data connections between S1 and D.
the congestion at the data buffer. This effect is due to the reduction in the achievable
throughput on the S2-D path as the congestion on the S1-D path increases. When this
throughput comes close to the average rate of the video, the video packet delays increase
significantly. In fact, if a 100 msec end to end delay limit is placed, more than 5% of the
packets are lost for 3 connections and about 50% for 9 connections as a result of delays in
this hop alone. Such drop values indicate that the video quality can be severely affected
by non-selective flow control. Hence, this scenario clearly demonstrates the need for control
actions to differentiate between traffic classes.

Other experiments have shown that situations where the video traffic and the data
connections causing the congestion share the same incoming link, the effect of the control

action delay is not very significant due to the prioritization mechanism, unless the time delay

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 168

10" S S
O, e
;
S
]
2
s
B0
>
5 _
é 0 20%.
2 .
§ 70%| 6o%| %\ 40
10-3 1 Ju I 2 3
0 0.01 0.02 0.03 0.04 0.05
Delay in seconds

Figure 3.24: CCDF of video packet delays for different threshold margins.

before the actions are reversed (i.e., the threshold margin) is large (see Fig. 3.24). Therefore,
if CoS information is not taken into account, it would be necessary to keep the threshold
margin as small as possible to address this particular issue. However, this requirement
conflicts with the one associated with the scalable scheme where switches promptly propagate
fiow control frames. This shows that including CoS service information in the PAUSE frame

is essential. Alternatively, switches may be configured not to block sensitive classes.

3.5.4 Suggested Modifications to the PAUSE Frame Format

The scenarios presented in this chapter show that modifications need to be made to the
PAUSE frame formats to at least include destination MAC address information and class
of service. The information can be encoded as shown in Fig. 3.25. Each additional field
would be individually identified by a 4 bit Type field, which would allow 8 different types of

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 169

68 [Destination Address -]
. (01-C2-80-00-00-01)]
68 : Source Address —
28 [Type (8808)]
2B Op code (0001)]
28 — Pause time in slots -
Type L Length
_ Control Class of Service
Type ! Length
Control Destination Address
B Padding (must be zero) :
VAR :

Figure 3.25: Suggested modifications to the PAUSE frame format.

information (e.g., class of service, destination MAC address, source MAC address, protocol
etc...). The length of each piece of information would be specified in a 4 bit Length field,
allowing a size from 1 byte up to 7 bytes, which is sufficient for the 6 byte Ethernet addresses,
the longest field in a MAC frame. Note that the presence of additional control information
can be inferred from the byte following the last recognized field being non zero. If the size of
the PAUSE frame (currently 64 bytes) is changed as well, several hundred MAC addresses
which need to be controlled can be included in one maximum sized MAC frame, decreasing

the header overhead.

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 170

3.6 Summary

In this chapter we studied the effects of short-term congestion resulting from TCP’s bursti-
ness on the performance of data transfers in switched full-duplex Ethernet LANs. We showed
how a hop-by-hop flow control mechanism can be used to address these effects by eliminating
packet loss, thus bypassing TCP’s costly timer-based flow control mechanism.

However, we pointed to the fact that a simple, non-selective back-pressure mechanism
could result in control actions affecting connections that are not involved in the congestion,
leading to overall performance degradation. In addition, the buffering resources required
to eliminate loss may be large, spreading the congestion throughout the network. To avoid
this situation, the scheme should use additional information to distinguish between different
flows or flow aggregates. We have looked at communicating MAC address information as a
way to selectively target flows.

Similarly, if control actions are performed independently of traffic class, congestion at
one traffic class may significantly hurt traffic belonging to higher traffic classes, especially
by delaying time sensitive traffic. Therefore, traffic class information needs to be included
in the PAUSE frame, or alternatively, time sensitive classes should not be subjected to flow
control.

Moreover, we point to the need for the careful design of the different components and
setting of the parameters of the control scheme. For example, the thresholds used for conges-
tion detection must be selected to prevent loss, without resulting in large control overhead.
In addition, switch buffer usage by packets from blocked flows must be limited. Otherwise,
congestion might propagate throughout the network, even when destination address-based
flow control is implemented. In particular, for scalability reasons, core switches may need to
promptly forward flow control notifications, without buffering blocked packets themselves.

In addition, situations where the absence of source control results in severe degradation

of network performance indicate the need to include in the control mechanism some measures

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 171

that provide resilience to any non-conforming behavior of network devices. Thus, it might
be necessary to disable flow control on a port that does not see a halt in input traffic, when
some period of time elapses after sending flow control notifications.

Finally, a well designed flow control scheme is not only more efficient and perhaps less
costly than increasing the sizes of all buffers, but it also has other advantages, such as
controlling the bandwidth allocation among different input links, and giving lower queuing
delays in the network. The latter is a key advantage for networks carrying time-sensitive
multimedia traffic, or specialized networks which have a high performance requirements, such
as storage area networks. Moreover, preventing packet loss helps achieve a more efficient
use of resources, especially when the lost packets belong to flows coming from the WAN.
Such packets would have already used resources along the way and better not be lost in
the destinations’ LANs. Furthermore, by using back-pressure, congestion can be moved out
toward the boundaries of the LAN where it can be dealt with more efficiently. Thus, stations
can reduce their transmission rate by using their large memory resources to buffer packets.
or by notifying higher layers to reduce the data generation rate. For example, a video source
may modify the parameters of the encoding scheme in order to reduce the average rate of
the generated video stream. Data sources using TCP will have their rate regulated at the
maximum possible throughput as a result of the interaction of TCP’s self-clocking with the
flow control. Similarly, routers can use elaborate techniques for congestion control such as

Explicit Congestion Notification (ECN) [79], and/or differentiated dropping.

CHAPTER 3. SELECTIVE FLOW CONTROL IN SWITCHED ETHERNET LANS 172

Chapter 4

Improving Interactive TCP

Applications

In the previous chapter, we showed that congestion induced packet loss can severely degrade
the performance of data transfers in the LAN context. We demonstrated how this can be
remedied using MAC address and traffic class based selective flow control which eliminates
loss in the network, without increasing queue sizes in the network or otherwise affecting
real-time applications. In the controlled environment of a LAN, it is conceivable to deploy
flow control mechanisms which require compliance from all network switches and stations.
However, in the Internet at large, the different networks use widely different technologies
and are independently owned and managed. Therefore, it is probably not feasible to deploy
such mechanisms end-to-end, and different mechanisms are needed to deal with packet loss.
In this chapter, we assess the performance of interactive data applications in the Internet
during congestion episodes, and propose ways of improving their performance by means of

service differentiation.

173

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 174

4.1 Introduction

We have all had the frustrating experience of dealing with large and variable delays when
using interactive Internet applications, such as Telnet and the Web. These applications
clearly have more stringent delay requirements than “traditional” data applications like FTP
and email. For example, human-computer interaction studies have shown that the response
time of highly interactive tasks (such as teletyping in Telnet), should be below 150 msec for
best user-perceived performance [206|. Beyond that, delays in response time (e.g., Telnet
echo delays) become noticeable and, eventually, they would severely hinder the usability
of the application, especially if delay variability increases as well. Comparably stringent
constraints apply to other highly interactive data applications, such as remote graphical
desktop access and real-time gaming. Similarly, Web page downloads should complete in a
few seconds (e.g., less than 5 sec [36]), and should have low variability to be satisfactory
to users. The low delay and high predictability requirements have also been found to de-
pend on the perceived importance of the page content and the task at hand. For example,
they are stricter for business applications, such as e-commerce and online trading, than for
normal Web browsing (for more information on user-perceived performance of interactive
applications, the reader is referred to [36, 40, 206] and the references therein). The growing
importance of these and similar Internet applications’ role in our daily life behooves us to
improve their delay performance.

Delays in response time are introduced in the network as well as in the servers. Clearly,
heavily loaded servers may introduce large delays in response time for interactive (e.g. Web)
transfers. A content provider interested in decreasing these delays can do so by increasing
server capacity (e.g., using higher performance hardware), by prioritizing requests based on
the application or the importance of the request for interactivity [65], or by using content
replication and caching. In contrast, network delays, which form a significant part of total

delay for Web transfers [26, 30, 147, 160], are usually outside the control of the provider or

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 175

any other single organization, and thus not as easily reduced. In this study, our focus is on
network delays, and we assume that server performance has been properly addressed and
server delays are therefore negligible.

For a concrete example of the impact of network delays on interactive applications,
consider Telnet. In the common usage of Telnet, users type characters at a terminal, at
speeds up to 5 characters per second [206]. These are sent over a TCP connection to a
server, which echoes them back. Network delay for Telnet is the time between typing a
character and the reception of the corresponding character echo. It includes transmission,
propagation and queuing in network buffers. Telnet is sensitive to per-packet delays, and
therefore these components can perceptibly affect the end-user experience. Furthermore, if
the packet containing the character or the echo is dropped in the network, additional delays
are introduced as TCP’s reliability mechanisms are invoked to recover the lost data.

Similarly, network delay for Web browsing is the time between the generation of a page
request and the reception of the corresponding Web page components (HTML code and
in-lined images)!. Again, this delay includes transmission, propagation and queuing de-
lays for individual packets. However, the delays due to TCP’s mechanisms for connection
establishment, reliability and congestion avoidance and control are typically the most sig-
nificant. This is particularly the case for HTTP/1.0, where a TCP connection is opened for
each component of a page, adding a non-negligible connection establishment overhead to the
total transaction delay. As discussed in [160], the use of one, “persistent”, TCP connection
to transfer all Web requests and responses between a client and a server eliminates this
overhead. This usage has been adopted in HTTP/1.1.

We are interested here in the delays due to network congestion-induced queuing and

packet loss. TCP was designed with the goal of realizing the maximum throughput over a

'To simplify the presentation, we ignore DNS lookup delays. However, we note that the mechanisms
we study should also be used to decrease the network component of these delays. In addition, we do not
take into account delays due to processing at the client side (e.g., browser processing of HTML code and
rendering of graphics etc...). With the sustained increase in processing power of commodity systems, these
delays are seldom noticeable.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 176

path with unknown bandwidth and round trip delay. During a long transfer, TCP actively
probes the network for available resources by continuously increasing its window and there-
fore the amount of data it injects in the network, filling up network buffers until packet loss
occurs. Packet loss is followed by a period of idle time, and a possibly severe reduction of the
sending window. Such loss, and the time needed for recovery typically do not significantly
affect the long term average throughput of a large transfer. However, the impact of large
delays in queues and packet drops for interactive transfers that share the same network
buffers is significant. Indeed, the delays thereby introduced are excessive for delay sensitive
applications, and result in degradation of user-perceived performance. While bottlenecks
may not exist in the reputedly over-provisioned backbone of the Internet, they tend to nat-
urally occur along the paths of connections, for example at the boundary between different
service providers’ networks, or between wired and wireless networks (which typically have
limited bandwidth resources). Given the burstiness of TCP traffic and the uncontrolled
usage of the network, congestion and packet loss are bound to occur at these bottlenecks.
Therefore, when examining response time for interactive TCP applications, there is a strong
motivation to address the effects of network delays due to congestion.

In this study, we achieve the goal of reducing congestion-induced delays for interactive
applications using service differentiation mechanisms, such as those defined in the [ETF
DiffServ architecture (see [37]), and in the Assured Forwarding service in particular. We
consider two approaches to the use of these mechanisms. In the first, preferential treatment
is given to interactive applications in the network, thereby reducing the packet loss rate
they incur. Thus, highly interactive applications, such as Telnet, would be given priority
over interactive applications, such as Web transfers, which in turn are given higher priority
over non-interactive applications. We show that, by properly classifying traffic based on the
applications’ characteristics and requirements, user-perceived quality can be significantly
improved, albeit at the expense of lower priority traffic. The second approach automati-

cally prioritizes short (interactive) transfers by basing the priority of packets on the TCP

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 177

connection window. A source marking algorithm is described, which allows fine-grain con-
trol on the performance of individual connections. This approach is shown to improve the
user-perceived performance of interactive transfers, without significantly affecting others.
The rest of this chapter is organized as follows. Section 4.2 describes the simulation setup
used in the study. Section 4.3 motivates the work, by illustrating the effects of congestion
on Web page downloads and Telnet echoes. In Section 4.4, we present the service differen-
tiation framework assumed for the study. We describe the different network functions that
are expected in edge and core routers, and in source hosts. In Section 4.5, we show how
prioritizing interactive applications traffic in the network can improve the performance of
such applications. Limitations in this approach lead us to look for a more flexible solution.
In Section 4.6, we propose a set of generic TCP state-based service differentiation mecha-
nisms that can be used to improve the performance of all TCP applications. We conclude

in Section 4.7.

4.2 Simulation Setup

This study relies on computer simulations, using ns [1]. Therefore, we pay particular atten-
tion to the design of an accurate and realistic simulation setup, which we describe in this
section, justifying the choices made along the way. Unless otherwise noted, the parameters

specified below were used for all the experiments in the study.

4.2.1 Network Scenario

To illustrate the issues at hand, it is sufficient to consider one network bottleneck, shared by
all connections. We therefore use a symmetric, multi-hop tree topology, shown in Fig. 3.1,
where sources and destinations are communicating across the bottleneck. We use typical
speeds for the links between users and routers, and the bottleneck link speed is varied in

the scenarios. Given the relatively high speed links chosen, and in order to generate a

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 178

’
, Bottieneck router . .
e QO
. BTLNK BW)
\ Bottieneck router , .
1 SMbos \ ' '

Figure 4.1: Network Topology.

realistic traffic aggregate, several hundred traffic sources of the different types are needed.

Furthermore, to capture the effects of the aggregation of many flows, which may modify

the characteristics of individual flows, traffic from different sources is aggregated at several

points before reaching the bottleneck. The topology thus contains a total of 800 hosts,

organized in 400 source-destination pairs, as follows:

1. At the lowest level, ten users are connected to every 1% level router, each with a

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 179

1.5Mbps (e.g., cable modem or T1) link.

2. At the second level, eight 1°t level routers are connected to each 2"¢ level router, with
10Mbps (e.g., Ethernet). This gives a potential bottleneck with a speed ratio of 1.5 to

1 between the aggregate of user links and the uplink of the 1¢ level (access) router.

3. Five 2™ level routers are connected to each bottleneck router with 45Mbps (e.g., T3)
links. This gives a potential bottleneck with a speed ratio of 1.8 to 1 between the

aggregate of 10Mbps access router uplinks and the uplink of the 27 level router.

We have also experimented with different topologies, fewer users and correspondingly lower
link speeds, with similar results.

The simulated network only needs to capture the main aggregation points and poten-
tial bottlenecks of a larger, more complex network. Therefore, each link in the topology
effectively represents several actual links, as well as the intermediate nodes. Hence, the
propagation delay of each link in the simulation accounts for the transmission and propa-
gation delays on the links it represents, and the switching delay in the intermediate nodes.
The delays for the different links in the topology are selected to lead to a mix of round
trip times between different source-destination pairs (20, 40, 80, 120 and 200msec), thereby
covering a wide range of RTTs, from metropolitan to inter-continental. Each group of 10
users at the lowest level of the tree contains 2 users with each of the different RTTs.

In order to generate network congestion at levels similar to those seen in the Internet,
and since the number of flows in the simulation is limited, we use buffers that are smaller
than what is common in commercial equipment. On the 1.5Mbps, 10Mbps, 45Mbps and

bottleneck links they are 64, 64, 250, and 500 packets, respectively.

4.2.2 Traffic Models

The simulation results presented in this chapter use TCP NewReno. However, the same

experiments were repeated for the Reno and SACK versions, and identical results were

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 180

obtained. In order to remove the limitation of small receiver advertisement on the sending
window size, and therefore emphasize the more interesting role of the congestion window,
the receive buffer size was set to 64KB (the maximum unscaled value). However, given
the congestion levels seen in the simulations, a buffer size of 32KB (a more common value,
used by Linux receivers) would have produced identical results. Smaller values (e.g., 8
KB or 16KB) would have limited the sending rate of some sources in scenarios with large
bottleneck link speed and might have affected, to a limited extent, the numerical values
obtained. Note that the TCP sources in ns do not explicitly perform the 3-way handshake
connection establishment phase. However, when considering the network performance of
such sources, their behavior adequately reflects the behavior of actual sources during this
phase.

We model the following representative TCP applications traffic: interactive Web, Tel-
net and FTP, generated in proportions that attempt to roughly approximate their real life
counterparts, across the range of bottleneck links used. For each application we present the

model used in the simulations, and the performance measure of interest.

HTTP

We use two different HTTP models, one for HTTP/1.0 and the other for HTTP/1.1 (see Fig.
4.2). The HTTP/1.0 client sends a request which, when completed, is followed by the server
sending the HTML index page. When the index is received, up to 4 connections are opened in
parallel to transfer the objects (e.g., images) embedded in the page, as in popular commercial
browsers.2 After each object is received, the corresponding connection is closed, and a new
one opened if more objects remain to be transferred. In contrast, the HTTP/1.1 server uses

only one “persistent” connection to send all the objects assuming a pipelined request, i.e.
y J g eq|

ZNote that, in order to reduce the complexity of the sources in the benefit of larger simulation scenarios,
this model does not capture the requests sent by the user for individual objects. However, these additional
exchanges would have only strengthened the case we make in this study by increasing the likelihood of
performance degradation for Web transfers.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 181

server client server client
{scurce) (destination) {source)} (destination)

REQ

up to
4 coann.
start
cransfer
images in
parallel

|

Figure 4.2: HTTP Models. HTTP/1.0 and HTTP/1.1 differ in the way embedded images are
transferred.

HTTP/1.0 HTTP/1.1

all object requests are considered to be received together and therefore all objects are sent
without inter-object delay. The connection is closed when the transfer is complete. This
corresponds to the optimal use of HTTP/1.1’s new functionality. The performance measure
we use, download time, is the delay from the time a request is sent, until the whole page is
received. We show the complementary cumulative distribution function (CCDF) of download
times rather than the average or other single statistic, which may hide performance problems
that affect only part of the downloads.

The composition of each Web page in terms of number of in-lined objects, and the size
of each object are drawn at random from known distributions, as in [69]. Short, uniformly
distributed user “think time” (2.5 sec average) is used to simulate heavy Web usage. It would
have been possible to generate the same traffic by adding more users to the simulation, a
more taxing alternative on the simulator. When collecting download time samples, we use a

small number of probe sessions (5 for each of the HTTP versions) each with a different round

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 182

trip time, which download fixed size pages (a 1IKB HTML index file with 8 in-lined images
of size 10KB each) to eliminate the variations in download times due to different page sizes.
Using fixed values allows us to more easily assess the performance obtained, without losing
much of the applicability of the results. The file sizes and number of files per page for these
users are close to median values found in recent Web traffic studies [155], which indicate that
the complexity of Web pages has increased since earlier studies such as [146]. The aggregate
traffic generated by the HTTP sources, when no other traffic is present (lossless network),

amounts to about 33Mbps.

Telnet

We model a Telnet client, as regulated by Nagle’s algorithm. The client sends a 100 byte
packet® to the server and waits for the acknowledgment (echo). The process is repeated
after a random interval, such that the packet generation rate is approximately 5 characters
per second, the rate for a fast typist [206]. The performance measure, echo delay, is the
time it takes for a segment sent by the client to be acknowledged. Again, we show the
complementary cumulative distribution function (CCDF) of echo delays rather than the
average or other single statistic, which may hide performance problems that affect only part
of the echoes. The aggregate traffic generated by the Telnet sources, without other traffic

(lossless network), amounts to less than 2Mbps.

FTP

We use two types of FTP sources. The first, FTPlong, does infinite file transfers, the through-
put of which is the performance measure of interest. The second, FTPshort, sends files with
Pareto distributed files sizes (with shape parameter 1.2 and average 200KB, the mean value

of file transfers measured in an Internet backbone study [216]) separated by an exponentially

3This approximates the size of a typical Telnet packet containing a few characters, a 40+ byte TCP/IP
header, as well as the MAC frame overhead. Since the latter is not present in ns, we include it here because
the transmission time it adds on slow links may be perceptible to Telnet users.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 183

distributed delay, with a relatively short 2 second mean, in order to create heavy traffic. The
performance measure for FTPshort sources is the file transfer time. When collecting transfer
time samples, we use 10 probe sessions with different round trip times, which perform 200KB
fixed size transfers, in order to eliminate transfer time variations due to different file sizes.
The traffic generated by the FTPshort sources is elastic, but cannot fully utilize a bottleneck
larger than 100Mbps by itself.

FTPshort sources are also used to create traffic on the reverse (ACK) path, i.e. from
destination to source hosts. Such two-way traffic is important because it is more realistic than
one-way traffic, and involves interesting dynamics in the return queues, where the queuing
(“compression”) and potential loss of ACKs can affect TCP’s burstiness, and performance in

general [232].

4.3 The Effects of Congestion on Interactive Applications

To motivate this study, we present in this section the results of simulations which illustrate
the impact of congestion on the user-perceived performance of HTTP and Telnet.

The traffic scenario is as follows. Each source host has an active Telnet session, a Web
client, and an FTPshort client at the corresponding destination host. Both HTTP imple-
mentations are considered, where one half the clients use HTTP/1.0 and the other half use
HTTP/1.1. Fig. 4.3 shows the CCDF of page download times, that is, the fraction of down-
loads that exceed a certain time, assuming negligible server delays. Several curves are shown,
corresponding to bottleneck link speeds ranging from 45Mbps to 175Mbps. The top figure
shows the distributions for HTTP/1.0 download times experienced by the 5 probe sessions,
which have different round trip times (ranging from 20 to 200msec). Each curve is labeled
with the average packet drop rate seen at the central link buffer. It is observed that, for
all but the highest link speeds, a significant fraction of the downloads incur large delays. In

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 184

addition, large variability can be seen in page download times for all link speeds. Experi-
ments with a fixed total page size (LKB HTML file, 80KB images), and a varying number of
(equal size) images per page show that the variability of HTTP/1.0 download times increases
with the number of objects in the page (see Fig. 4.4). While we observed goodput figures
approaching 100% in the experiments above, attesting to TCP’s success in making good use
of available network resources, the curves in Fig. 4.3 clearly indicate that the user-perceived
performance of Web transfers is unsatisfactory.

Similar results are shown for HTTP/1.1 in the bottom figure. The first observation is
that the delays incurred here are lower than those for HTTP/1.0. However, both the delays
and variability are still larger than desired. Moreover, the use of different source servers for
different objects within a page would reduce HTTP/1.1’s performance benefits, as already
pointed out in [137]. Note that the extent of HTTP/1.l’s deployment is still limited, as
observed in various measurement studies [17, 137], which have found lack of deployment or
compliance on both the client and server sides. For example, in a measurement study of
Web site compliance, fewer than 30% of connections to a set of popular Web sites were able
to successfully retrieve a complete page with a persistent connection and pipelining [137].
In the rest of the study, we focus on HTTP/1.0, noting that comparable results are obtained
for HTTP/1.1.

In the top graph of Fig. 4.5, we show the CCDF of page download times for HTTP/1.0
for different bottleneck buffer sizes and a 60Mbps link speed. Each curve is labeled with the
buffer size and the average packet drop rate observed at the buffer. While the curves show
some improvement as the buffer size is increased, it is clear that no buffer size results in good
performance, even for when no loss is incurred (20MB). The percentage of page downloads
exceeding 10 seconds for different buffer sizes is plotted in the top graph of Fig. 4.6. This
graph shows that although there seems to be an optimum buffer size, the performance at
the optimum is not satisfactory. While the performance does improve with the buffer size

for larger link speeds (e.g., L00Mbps, results not shown), this is a simulation artifact caused

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 185

HTTP/1.0, All Users, Drop Tail
1 . S

Comptementary COF of Page Download Times
3

1 ‘ IbDS ~,
7.4'%
ods 3.6%) 60MDps, loss
150Mbps \ \ 75Mbps,
175Mbfis | loss 2.4% 1088 6.4%
loss 0. \
100 8, loss 4.9%
10'? s i 1 Il L 1 1 I]
[} 5 10 15 20 25 30 35 40 45 50

Page Downicad Time in Seconds
HTTP/1.1, All users, Drop Tail

:
-

Complementary CDF of Page Download Times
=]

104 2 S L Nt 1 2 1 i 2 Il
V] 5 10 15 20 25 30 35 40 45 50
Page Downioad Time in Seconds

Figure 4.3: CCDF of HTTP/1.0 and HTTP/1.1 downloads for different bottleneck speeds, and
drop tail queues in all routers.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 186

HTTP/1.0. Al users, DT, btink 60Mbps
10 e . .. C e e e e e e e e - N ..

Compiementary COF of Page Download Times
3

]
5
&
]

0 5 10 15 20 25 30
Page Download Time in Seconds

Figure 4.4: CCDF of HTTP/1.0 downloads for different numbers of images per page, keeping
the page size fixed, and with a 60Mbps bottleneck.

by the limited number of sources in the simulation. Furthermore, a comparison of the
results using drop tail queues (dashed lines) with those of RED queues (solid lines, refer
to bottom graph of Fig. 4.5) shows that the benefits attributed to RED queues, namely
improved throughput along with smaller average queue size and queuing delay [78|, are
either nonexistent or do not translate into better user-perceived performance. These figures
illustrate the point that increasing the buffering in the bottleneck node does not necessarily
result in good performance for interactive applications. In fact, as clearly shown in Fig.
4.7, decreasing the packet drop rate through increasing the bottleneck link speed is the
only effective way to improve their performance. This fact is even more apparent for highly
interactive applications like Telnet, as we show later.

Given the link speeds and the page size considered, expected download times are in the

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 187

HTTP/1.0, All Users, DT. 60Mbps
‘0 \' :AA:;:AV .‘. v

S
L

Complementary COF of Download Times

o] [10 15 20 25 30 35 40 a5 50
Page Downioad Time in Seconds

HTTP/1.0, All Users, RED vs DT, 60Mbps
10 . 9 L] ¥ T
b qg \

-
o
L

Complementary COF of Download Times

10

Figure 4.5: Top graph: CCDF of HTTP/1.0 download times for different buffer sizes and
60Mbps bottleneck link. Bottom graph: CCDF of HTTP/1.0 download times for different
buffer sizes and 60Mbps bottleneck link, comparing RED (solid lines) and drop tail (dashed
lines) queues.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 188

HTTP/1.0, DT, 60Mbps

Percentage of Page Downloads Exceeding 103ec
g
L}

10 10’ 1
Bottleneck Buffer Size in KB

Figure 4.6: Percentage of HTTP/1.0 page downloads exceeding 10 seconds for different bot-
tleneck buffer sizes, 60Mbps bottleneck link.

order of a few seconds. To explain the surprisingly large range of delays that are incurred,
one might consider the different RTTs to be an important factor. However, this can be
easily dismissed by looking at the CCDFs for individual probes (graphs not shown). While
we find some small differences in the delay plots for the various RTTs, they all show the
same spread in download times as in Fig. 4.3. Thus, the factor to be considered is the
packet loss observed in the simulations, which ranges from about 8.5% for the 45Mbps link
to about 1% for the 175Mbps link. Such drop rates are not uncommon in the Internet.
For example, a measurement study of a large number of TCP connections at a busy Web
server observed TCP segment loss rates in the Internet ranging from 5 to 7% [26]. However,
the study does not show the resulting download delays. Here, we can show the packet
drops’ impact on the user-perceived performance of the Web transfers. In the experiments

above, corresponding loss rates are observed for central link speeds of 100Mbps and 60Mbps

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 189

HTTP/1.0, Al users, DT, BF-60M vs BW

—

Compiementary COF of Page Download Times
8

‘h 5MB, 2.4%
15 20 25 0 35 40 a5 50
Page Downlcad Time in Seconds

Figure 4.7: CCDFs of HTTP/1.0 download times obtained when increasing the bottleneck link
speed (with a 500KB buffer, dashed lines) versus increasing the buffer size on a 60Mbps link
(solid lines). We contrast pairs of curves having comparable drop rates.

respectively. As shown in Fig. 4.3, about 15% of HTTP/1.0 page downloads for the 100Mbps
central link (30% for the 60Mbps link) incur delays larger than 10 seconds, the limit beyond
which quality is typically perceived as low [36]. The percentage of downloads that exceed
10 seconds for HTTP/1.1 drops to 5% at 100Mbps, and 20% at 60Mbps.

The large delays and variability observed for Web downloads can be explained by exam-
ining the reaction of TCP’s reliability and congestion control mechanisms to loss. First, the
loss of connection establishment segments (SYN) is very costly to recover, given the large
values commonly used for the initial retransmit timer (e.g., 3 or 6 seconds [42]). With the
large number of short connections used in Web transfers, such loss is not a rare occurrence

within a session. Second, TCP’s loss recovery mechanisms are known to be inefficient when

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 190

a connection’s sending window size is small, as discussed in [66]. Indeed, for a small win-
dow (e.g., fewer than 4 packets), the number of duplicate ACKSs received by the source is
not sufficient to trigger the fast retransmit mechanism, which typically requires 3 duplicate
ACKs. Instead, TCP has to rely on the retransmit timer, typically resulting in a minimum
idle time of 1 second®. Given that interactive transfers are usually short, they operate at
small windows and are therefore particularly vulnerable to packet drops, as observed in [26].
In addition, the timeout is followed by slow start, where the connection operates at reduced
rate. Finally, the “exponential retransmit backoff” rule typically doubles the retransmit
timer value when a retransmitted packet is lost {186]. This means that the loss of successive
retransmissions results in very large delays. Similar observations were made in a measure-
ment study [30], where the causes of transaction delays are profiled by tracing TCP packets
exchanged between Web clients and servers. The study shows the network is a significant
component of total delay for medium sized transfers (Web objects), and packet loss is the
main cause of response time variability.

Telnet is also very susceptible to loss, since it usually has only one packet in transit at
a time. The loss of this packet always requires waiting for the retransmit timeout which,
at lsec minimum, introduces delays beyond the limit for good interactivity. In addition,
successive losses would rapidly result in clearly unacceptable performance. For example,
in the scenario described above, for the 100Mbps link and the RTT range used, 1 in 10
echo delays takes about 1 second, while the others are received within acceptable delays,
resulting in a bimodal delay distribution, as shown in Fig. 4.8. Significantly worse results
are obtained for slower link speeds, as we show later. Fig. 4.9 shows the CCDF of echo
delays for a 60Mbps link for increasing bottleneck buffer size values. This graph clearly
shows that using larger buffers rapidly leads to queuing delays that render the performance

Telnet and similar highly interactive applications unacceptable. Along with the results for

*The standard RFC for computing the retransmit timer places a 1 sec minimum timer requirement, even
when the actual timer computation results in a lower value [186].

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 191

Teinet, 80msec RTT, Drop Tail

10

]
-

Complementary CDF of Echo Delays
3

10'3 2 1 1 L 1 L L L L
0 0.2 0.4 0.6 08 1 12 14 1.6 18 2
Echo Delay in Seconds

Figure 4.8: CCDF of Telnet echo delays of an 80msec RTT connection for 60Mbps and
100Mbps bottleneck links.

Web traffic shown above, this motivates us to look for an approach to improving interactive
applications’ performance during congestion that does not rely on larger memory resources
in network switches and routers.

These aspects of current TCP implementations show that they are not optimized for
use in interactive applications. One may consider changing TCP’s parameters to reduce
the impact of large default values on performance. For example, the effects of reducing
TCP’s minimum timer value and the granularity of the timer are studied in [12]. Such
modifications to TCP, as well as reducing the initial retransmit timer value, might improve
the performance of interactive applications by increasing their aggressiveness. For example,
simulations with small timer granularity (20msec instead of 200msec) improve Telnet’s echo

delays compared to unmodified TCP, by decreasing the minimum retransmit timer (see top

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 192

10

Complementary CDF of Echo Delays
=

10°

Echo Delay in Seconds

Figure 4.9: CCDF of Telnet echo delays of a 120msec RTT connection for 60Mbps bottleneck
link and different bottleneck buffer sizes.
graph in Fig. 4.10). However, the performance of Web downloads with this modification
is worse than for regular TCP (results not shown). Furthermore, using a 1 second initial
timeout (instead of the 6 second default used above) results in perceptibly lower HTTP/1.0
delays, as shown in the bottom graph of Fig. 4.10. However, this value may result in
performance degradation over long delay paths. In addition, concerns about the stability of
the network may be raised as a result. Indeed, the loss rates observed in this scenario are
about 20% higher than with “standard” TCP. Therefore, we do not further investigate such
changes in this study, and consider TCP implementations as currently deployed, and which
follow the relevant standards for retransmission [42, 186].

An alternative to modifying TCP’s mechanisms, is to decrease the loss rate for interactive

applications during congestion episodes, by giving priority to their traffic in the network.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 193

Teinet, 80msec RTT, btink 60Mbps, Drop Tail

‘0 L ¥ ¥ .3 [} L3 ¥ L3 T

Complementary COF of Echo Delays
3
T

1072 L L
0 02 04 06 08 1 1.2 14 1.6 18 2
Echo Celay in Seconds

HTTP/1.0, All users, RTO1

10 5 T T T T T T T T T

g
&
&
]
]
s 10 b
[/
Q
[$]
=
- L 1 1 U O V. N
2 ops
£ 3
(&)
b 72SMbps X ...
100
104 1 1 L) 1 1 L 2
0 5 10 15 20 25 0 35 40 45 S0

Figure 4.10: Performance with modified TCP parameters. Top graph: Telnet echo delays
for regular TCP and TCP using finer clock granularity (20msec vs 200msec). Bottom graph:
CCDF of HTTP/1.0 downloads for initial RTO of 1sec.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 194

We explore this idea in the following sections.

4.4 QoS Framework

In this section, we describe the network QoS mechanisms that are used in this study. We
consider simple mechanisms, such as those introduced by the I[ETF DiffServ architecture
[37], and the “Assured Forwarding” service in particular. We first briefly review related
work on the Assured Forwarding service, then we present the dropping functionality we use
in routers. Lastly, we discuss the service agreements between the network and its clients,

and the mechanisms needed for ensuring compliance with such agreements.

4.4.1 Assured Forwarding

DiffServ enables service providers to give preferential treatment to some packets inside the
network. A simple form of service differentiation within one queue can be provided by mark-
ing packets with multiple drop priorities, in association with a prioritized buffer management
(dropping) mechanism. Such a service, called Assured Forwarding, was standardized in [103].
Four AF classes are defined, each with 3 drop precedence levels. The use of the AF service
has been the subject of many studies, e.g., [58, 97]. These studies focus on guaranteeing
throughput for individual TCP connections, considering that an edge device, e.g. router,
would mark users’ traffic based on an agreed-upon profile. However, besides the need for
appropriate provisioning along each connection’s path (or some form of end-to-end admis-
sion control), this paradigm faces a number of challenges. First, in order to have control on
individual connections’ performance, the router needs to identify and keep track of all user
connections. This might be prohibitive for the short transfers associated with interactive
applications. Second, it was found to be doubtful that TCP throughput can be controlled
through such marking and dropping [167, 196]. An alternative to this approach is to have

sources pre-mark their own traffic. Previous work in this area has also focused on achieving

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 195

an average rate for long transfers. Modifications to TCP’s congestion control mechanisms,
such as the use of 2 congestion windows or having different reactions depending on the mark-
ing of the lost packet, were required to obtain the desired performance {71, 230]. In this
study, we are mainly concerned with short transfers belonging to interactive applications,
which require a fundamentally different type of service. These have not been addressed in

previous AF-related studies.

4.4.2 Priority Dropping

Following the AF specification, we consider queues where 3 packet priorities are supported,
LOW, MED and HIGH. In this chapter, we only consider TCP traffic. The integrated support
of TCP and UDP applications in a network offering differentiated services is the subject of

the following chapter.

Queue Size

We compute three average queue sizes, one for each drop priority (HIGHgueue, MEDgueye
and LOWgyeue), using the EWMA filter as in RED. When a packet is enqueued or dequeued,

the three queue sizes are updated as follows:

QV9queue = - QWeight)av9queue + Queight-Currentqueye

When computing the current queue size for a certain priority, packets that are at this
priority level or lower are counted. For example, when computing LOW gycve, all packets are
counted. We use the same gycigne for all three queues. We have found that a large value for
Quweight {€-8., 0.5 giving a faster decaying history than for the common RED setting of 0.02)

generally gave better performance over a wide range of parameters and scenarios.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 196

1 Drop
prob.
MED HIGH
[L.OW
maxpl - .-.cceeneen. R R, $buffer
// size
< T T T
10 25 40 60 95

Figure 4.11: Drop function used in network buffer management. The threshold values are
given as percentage of total buffer size.

Drop Function

For each priority level X the drop function is defined by a minimum and a maximum
threshold and a maximum probability value, as in RED (Xminthresh: Xmazthresh and Xmazp
respectively). It consists of a linear portion between two average queue size thresholds. The
threshold values, as a percentage of buffer size, are shown in Fig. 4.11. When a packet with
a certain priority is received, the corresponding average queue size is checked. If it is below
the minimum threshold the packet is enqueued, if it is beyond the maximum threshold for a
given priority, all packets of that priority the packet is dropped. Between the two thresholds,
the packet is dropped with priority p, where p is the drop probability corresponding to the
average queue size.

We found that an identical mazp for the three levels was sufficient, with mazp at a low
value (0.1) giving better performance overall. We use the set of thresholds (expressed as
percentage of total buffer size) shown in Fig. 4.11, which we found to give good performance
across a wide range of scenarios.

However, given that simulations using instantaneous queue sizes and hard thresholds
(i.e., without early random drop) gave comparable performance, it appears that in general

these parameters have no major effect in our case. Furthermore, as shown in Chapter 3,

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 197

simulations with UDP traffic show that the non-random drop function gives better perfor-
mance for low congestion levels, and similar performance for high congestion levels. This
seems to indicate that when the number of connections and the variability in the file sizes
they send are large, the advantages of random drop are minimal, if any. This conclusion
agrees with the results of an experimental study of RED with actual Web traffic [54].

The settings above have been validated through their use in numerous scenarios, spanning

a large range of topologies, number of users, link speeds and traffic scenarios, where they

consistently provided satisfactory performance.

4.4.3 SLAs and Policing

To limit the aggregate rate of HIGH and MED priority packets in the network, service level
agreements (SLAs) exist between the users and the network. We consider that SLAs specify
per-user rate limits and allowable burst sizes for each of these two priorities, in the form of
a token bucket profile. We thus define two token bucket parameter sets for HIGH and MED
priority respectively:

(ouicH, praicH) and (orED, PMED)

It is up to the users to pre-mark their traffic according to these contracts or to defer the
marking to the service provider. On the other hand, it is the service providers’ responsibility
to ensure that SLAs are established in relation with the available network resources.

We do not assume that any kind of trust must ezist between the network and the users. In
order to police the marked traffic injected in the network, per-user mechanisms are present at
the network edge. Policing actions may consist of dropping offending packets, or remarking
them with a lower priority. Thus, the edge nodes effectively limit the aggregate rates of
HIGH and MED priority packets that are admitted to the network. A key point we make
is that, for scalability reasons, per-user agreements rather than per-connection agreements

are made, i.e. the agreements cover the aggregate rate sent by the user which, at any one

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 198

time, could be generated by only one or by many different connections. Given the policed
rate agreements with the network, it is to the best interest of sources which mark their own
traffic to implement shaping mechanisms that ensure conformance with the agreed-upon

traffic profiles.

4.5 Application-Based Differentiation

In this section, we show the benefits of reducing the packet loss experienced by interactive
TCP applications through giving priority to their traffic in the network. In addition, we
discuss the limitations of prioritizing traffic strictly based on the application type, which
motivate the need for a more flexible approach.

For simplicity, we use one AF class for TCP traffic. However, more than one class
can be considered, allowing more flexibility in assigning applications to the different drop
priorities. Using the 3 drop priorities available in an AF class, a natural mapping would
be to send highly interactive applications’ traffic, such as Telnet and network gaming, at
highest priority (HIGH); interactive applications’ traffic, such as Web, at medium priority
(MED); and less interactive and more robust applications’ traffic, such as FTP, at lowest
priority (LOW). Thus, in the event of congestion, no Telnet packets would be lost, and the
loss rate of HTTP packets would be limited.

The mechanisms required for such classification can be implemented in edge routers.
Note that the router does not need to keep track of individual connections, since the marking
could be determined on a per-packet basis (e.g., a simple scheme would use the well known
port numbers). An obvious advantage of router-based marking is that no changes would be
required in the stations. On the other hand, source-based mechanisms have the benefit of
off-loading routers, and may also be the only possible option when using an end-to-end IP
layer encryption scheme such as IPsec [35]. Indeed, [Psec hides all upper layer information
beyond IP, and TCP and application-level information would only be available at the source.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 199

=) &)

)

) (=3(=2
) ()G

L4

KKK
we d UY E-
buffers
[§
ke
marxing 2o
token =]
U bucket
uzcn |uzo|ow shapers o .!-ok:n
Ac: 4 I U policer
e L%k
TCP/IP stack Necwork L
Interface)
User Staction Router ports

Figure 4.12: Application-based differentiation mechanisms.

In our simulator, we implemented the required mechanisms in the traffic sources, as
shown in Fig. 4.12. When segments are released by TCP, the networking stack marks
the appropriate field in the IP header based on the connection’s application type. The
sending of HIGH and MED priority packets is regulated using two token bucket shapers.
Thus, for such packets to be transmitted by the source, sufficient tokens must be present
in the corresponding token bucket shaper. This ensures that the marked traffic generated
complies with the policer state at the router, which uses the same token bucket parameters
to identify and drop offending packets, if any.

We repeat the experiment of Section 4.3, with this mapping of application traffic to
priority levels. The aggregate high priority traffic in the reverse direction is chosen such that
the link speeds studied range from under-provisioned to over-provisioned, and corresponds
to a different application mix than on the forward direction. In Fig. 4.13, we show the CCDF
of HTTP/1.0 page download times, for 2 MED token bucket profiles (110Kbps, 6,000 bytes
- dashed lines, and 250Kbps, 6,000 bytes - solid lines). These rates cover the interesting
range of performance for the network conditions and the application requirements we are

interested in. The token bucket profile for HIGH priority is large enough to minimize the delay

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 200

Complementary COF of Page Download Times

- S
0] 10 15 20 25 30 35 40 45 S0
Page Downioad Time in Seconds

Figure 4.13: CCDF of HTTP/1.0 downloads for different bottleneck speeds, and application-
based differentiation with HTTP token rate of 110Kbps (solid lines) vs 250Kbps (dashed
lines).

of Telnet packets at the source (250Kbps, 6,000B). As would be expected, download times
are larger for the lower token rate, due to shaping delays at the source. Nevertheless, when
the bottleneck link speed can accommodate the aggregate HIGH and MED traffic generated
in both directions, the performance of HTTP is good for both profiles. Not shown is a similar
plot for HTTP/1.i.

As would be expected, sending Telnet traffic at HIGH priority eliminates packet drops for
all link speeds, and the corresponding delays seen in Fig. 4.8 (results not shown). On the
other hand, as discussed earlier, Telnet is not only sensitive to delays from packet loss, but
also to queuing delay. Multiple priority levels within one queue can be used to reduce packet

drop rate, but not queuing delay. Therefore, if a Telnet connection’s path goes over a low

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 201

speed link, it may become necessary to use multiple queues, served by a weighted round robin
(WRR) scheduler for example, to avoid long delays in a shared buffer. To illustrate this, we
scale down by a factor of 10 all the link speeds in the topology, i.e. users are now connected
to the network with 150Kbps links and the bottleneck link speed is 10Mbps. We use a traffic
scenario comparable to the previous experiments. Since the mechanisms studied here are
more complex than for the previous scenarios, and to keep the simulation size manageable,
we use a smaller version of the same topology for all the results in this section, with 360
users instead of 800. In Fig. 4.14, we show the CCDF of echo delays for a connection
with 80msec RTT, without differentiation (drop tail -DT- and RED), with application-based
differentiation (APPL), and with multi-queue differentiation for different scheduler weights
(lines labeled with the WRR scheduler weight of the Telnet queue). Although the shorter
queue sizes associated with RED improve the packet delays compared to drop tail, it is clear
that the quality obtained is poor for both, with large delays (several seconds) caused by
packet loss and retransmissions. The application-based prioritization provides significantly
better performance, with all echos taking about 700msec. However, the delays obtained are
still larger than desired. Only with a separate queue, and with a large enough scheduler
weight (e.g., 20% or more), can Telnet obtain the quality it requires.

The amount of Telnet traffic in the Internet is minimal (less than 1%, [216]), and giving
it priority over other traffic would improve its performance without affecting other applica-
tions. However, this is not the case for all interactive applications, particularly the Web.
The improvements in interactive applications’ performance may therefore come at the cost
of decreased performance for LOW priority traffic. In Fig. 4.15, we show how the LOW
priority FTP traffic is penalized, for different MED token rates and a 75Mbps bottleneck link.
The plots show that the transfer times corresponding to the application-based differentia-
tion are larger than for drop tail and RED, and increase with the MED token rate. For lower
bottleneck speeds, where the aggregate of HIGH and MED traffic approach the link’s speed,

the degradation in FTP’s performance is significantly more severe. Nevertheless, the radical

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 202

Teinet, 80msec RTT, One Queue vs Multiple Queues

10 et
1
\\ NN N N
; - B .
E _ oT
2 wRRl10% '
& :
s
Isﬂ'.\"
(3] o T RE .]
S _ T {nep
] R 20%. L
g ' :
§ waaA'l | T4P-08
5 .
-
10°? 1 @ ,o '
10 10

Echo Delay in Seconds

Figure 4.14: Telnet echo delays for muiti-queue and single queue differentiation.

improvements in interactive applications’ performance might justify the degradation in other
applications’ performance. Furthermore, as the plots for the different MED token rates indi-
cate, the effects on low priority applications can be reduced if the contracted aggregate rates
of higher priority traffic do not fully consume the network’s resources. Unfortunately, in the
DiffServ context, the lack of explicit resource reservation complicates network provisioning,
and the likelihood of over-subscription on some links can be high.

Another limitation of this approach resides in the large variability among different ses-
sions of one application type. For example, Web traffic (i.e. carried by HTTP) does not
only consist of HTML code and small images for Web pages, or other interactive transfers.
Indeed, measurement studies, such as [59], confirm what most Internet users know, that is,
HTTP is also used to transfer large text documents and multimedia (audio and video) files.

Without differentiating between HTTP sessions, interactive Web transfers may be affected

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 203

FTPs, All Users, Btink 75Mbps, Application-based Differentiation vs No Differentiation

10

Complementary CDF of File Transter Times
=]

-2 L

10 10' 10
File Transfer Time in Seconds

10

Figure 4.15: CCDF of FTP file transfer times with and without application-based differenti-
ation.

by longer, less interactive ones. This can be addressed in several ways. If source-marking
is performed, a solution would be to assign transfers to the LOW priority class based on
the content or transfer size.> However, this solution has the following drawbacks. First,
the document size is not always available at connection setup time (e.g., for dynamically
created content). Second, since some connections transfer different objects of different size
and importance, as in HTTP/1.1, it might be necessary to modify the connections’ priority
during their lifetime. Finally, the selection of the appropriate size thresholds for mapping
documents to the different priority levels may be difficult. Another option would be to add
more levels of service (drop priorities) corresponding to the sub-categories within applica-

tions, e.g. by using several AF classes for TCP applications as mentioned earlier. Finally,

5In this case, the network would be emulating the Shortest Remaining Processing Time scheduling studied
in the context of HTTP servers in [60].

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 204

')
e ol) L
[i slgoritiom I -

e T . —
aroeroriey | petiece
o UU B |11 {11]

E Netwark [__L_ ﬁ
tntertace

User Station Router ports

v

Figure 4.16: TCP-state based service differentiation mechanisms.

it might be possible to achieve our goals without using more priorities, by assigning indi-
vidual packets rather than entire connections to the different priority levels, as shown in the

following section.

4.6 TCP-state Based Differentiation

The limitations in the application-based approach lead us to look for generic mechanisms,
which can be used for any connection regardless of the application, and which would au-
tomatically prioritize short, interactive transfers while avoiding large negative impact on
longer transfers associated with strict application-based prioritization. In this section, we
show how the service differentiation available in one AF class can be used not only to achieve
these goals, but also to improve the performance of non-interactive applications as well. We
present mechanisms for 2 popular TCP versions (Reno and NewReno), which can be used,
with minor modifications, for other versions.

Instead of mapping entire TCP connections to one drop priority, we propose here that the

priority of each packet be determined individually. The mechanisms required at the sources

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 205

of traffic are shown in Fig. 4.16. The main differences relative to Fig. 4.12 are in the use
of: (i) a TCP-state based marking algorithm, rather than application-type based marking,
and (ii) an output link scheduler rather than simple token buffer shapers. In addition, an
application programming interface (API) might be used provide the applications access to
the settings of the marking and scheduling modules. An alternative would be to monitor the
connections’ performance and update the settings accordingly, or simply use default settings,
based on each connection's application type for example. When a feedback loop based
on monitoring the connections’ performance is installed, the applications may be able to
specify quantitative requirements, such as minimum throughput. The control module would
translate the requirements into settings for the marker and scheduler, which are dynamically
adjusted based on connection performance measurements. We do not go into further details
concerning the API in this study, and we use static settings for the marking algorithm and
the scheduler, although we do study their impact on the performance obtained. The marking

and scheduling mechanisms are described in more detail below.

4.6.1 Marking Algorithm

A source host may have active connections to several different clients, going over widely
different paths, and with correspondingly different performance. Given a limited budget
of high priority tokens, it is important to carefully select the packets among the different
connections to be marked as such. For example, consider a host with two active connections,
the first going over a lightly loaded path, and the other going through a congested path.
In this case, the first connection would not need high priority markings, while the second
would significantly benefit from them. Therefore, in addition to taking into account the
application the connection belongs to, the marking of individual packets for each connection
should be based on the current state of the connection. Accordingly, the marking algorithm
we describe here is based on TCP state and allows application-based differentiation to be

performed through two control parameters.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 206

The Algorithm

Two basic premises are behind this algorithm. First, TCP’s throughput is typically equal
to the ratio of the send window size and the RTT, and therefore the window size is a
good indication of the current performance of each connection. Hence, by prioritizing the
connections based on their send window, a minimum level of performance can be guaranteed
for each. Furthermore, the sending window of a connection that is performing well (i.e.
going over an uncongested path) would be marked at low priority, freeing up high priority
tokens, which can then be used to improve the performance of connections that need them.
Nevertheless, if such a connection subsequently suffers packet drops, its window size will
be reduced and it would automatically be marked at high priority. Second, as discussed
in Section 4.3, the loss of some segments within a TCP connection has more impact than

others on the performance of the connection. These segments are:

1. the connection establishment segments, which are extremely important to the RTT

sampling and the calibration of the retransmit timer
2. the segments sent when the connection has a small window, and

3. the segments sent after a timeout or a fast retransmit®. The loss of such segments
results in large idle time, as the connection waits for a retransmit timeout. There-
fore, by sending them at HIGH priority, it is possible to improve TCP’s resilience to

congestion and packet loss.

Thus, we base the marking of packets on the size of the send window, in addition to identi-

fying the other “special” packets and prioritizing them when necessary’. With this marking,

SFor NewReno, we also prioritize segments sent during fast recovery.

"Typically, TCP’s congestion window starts at 1 segment when the SYN is sent, and is reduced to
1 segment before a timeout-retransmitted segment is sent. Therefore, the window-based marking would
automatically prioritize these packets (assuming HIGHpresh 2 1). However, if the initial starting window
value is larger than 1, as proposed in [7], the SYN segment might need to be individually identified and
marked.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 207

the network during congestion can conceptually be seen as implementing a form of round
robin service, where each connection is given a quantum of service in turn, allowing short
connections (small jobs) to finish in predictable time.

A pseudo-code description of the algorithm is given in Alg. 1. The italicized code
corresponds to a randomized version which we describe below. The algorithm uses two
window size thresholds, HIGHipresh and M EDgppesh, to switch from HIGH to MED marking,
and MED to LOW marking respectively. Basically, as the window increases and crosses the
thresholds, packets are marked with decreasing priority. This means that a TCP connection
has high priority as long as it is operating below a certain sending rate. Varying the setting
of the thresholds allows fine grained control on the priority of a connection. While these
settings for a connection may be dependent on the number, characteristics and state of
other connections, this dependence only concerns the API (control) module. Besides the
threshold values, the marking for a packet does not depend on any parameter external to
the connection. This results in a simple and easy to implement, yet effective algorithm.

Note that the sending rate of some applications is limited by nature (e.g., by human
typing speed in Telnet) rather than by the TCP sending window. In this case, the window
size does not reflect the actual sending rate. However, congestion window validation mea-
sures, such as proposed in [100], if implemented, would help address this issue and keep the
marking aligned with the state of the connection. Meanwhile, it is also possible to set the
thresholds to mark such connections appropriately, as discussed in Section 4.6.1 below.

This marking algorithm, although based on TCP-state, requires no modification to the
TCP mechanisms, and is applicable to all TCP versions, with minor modifications related
to the internals of each version. As is clear from the pseudo-code, its addition to the
TCP stack requires only a few lines of code. Since it does not change the congestion control
mechanisms of TCP, the oscillations inherent to TCP’s behavior are not eliminated. Instead,
they are regulated, and the occurrence of extended idle times is minimized. As a result, when

long-lived connections are examined at time scales relevant to humans (e.g., 2 or 4 second

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 208

intervals) the performance is perceived to be steady, as shown in Section 4.6.3 below.
Notice that the window-based marking as described above abruptly switches between
priorities as the window crosses thresholds. We have also experimented with a randomized
variation that attempts to keep a fixed number of HIGH priority packets outstanding at
all times (e.g., equal to the HIGHp,esh), With the goal of preventing sudden changes in
performance. This is implemented through additional steps which mark packets with an
appropriately chosen probability function. The additions, shown italicized in Alg. 1, use
HIGH hresh and M EDypresn respectively as approzimate limits on the number of HIGH and
MED priority packets marked this way.® A potential benefit could be an increase in the

number of drops that are recovered through fast retransmit.

Algorithm 1 Marking Algorithm.

if sendwnd € HIGH:hreen
mark packet as HIGH

else if SYN or fast retransmit or fast recovery
mark packet as HIGH

else if sendwnd < MED:¢presn
with probability £1CEtean

mark packet as HIGH
mark packet as MED

else

. 1en HIGH,
with probability = jthcsad.

mark packet as HIGH
with probability ¥=2thceen

mark packet as MED
mark packet as LOW

Setting the Marking Thresholds

The marking thresholds provide control knobs that should be set according to the charac-

teristics and requirements of applications. For Telnet, they are set at maximum window size

$Note that in the initial stages of the window increase, i.e. during exponential growth, and before the
marking probability converges to the appropriate value, the marker tends to over-mark packets as HIGH
priority.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 209

in order for all packets to be sent at HIGH priority. Appropriately set thresholds automati-
cally protect short transfers, such as most HTTP page downloads. Finally, they are set large
enough to secure a minimum throughput for an FTP download.

With this marking, differentiation at finer granularities than application-level is possible,
for instance, at the level of individual sessions of the same application. Thus, it is possible
to prioritize a stock trading session, or a checkout page in an e-commerce site, over a regular
“surfing” session, by giving them higher thresholds. Furthermore, differentiation between
objects transferred using the same connection can also be done. For example, the user-
perceived performance of Web browsing can be significantly improved by insuring that some
components of a Web page, such as text and image bounding box information, are received
within a few seconds, and used to generate an early layout of the page (a.k.a. “incremental
loading”) [36, 40]. By using higher thresholds for these transfers, it is possible to guarantee a
minimum level of quality for Web downloads. In a client-server context, the marking settings
could be chosen by the server based on the connection’s RTT, the application, the requested
content, and/or the client (e.g., the user would “purchase” a certain service quality). Indeed,
allowing users a choice of quality of service has been shown to increase user satisfaction and
to optimize system usage [36].

After marking, packets are handed to the scheduling module. In order to avoid exces-
sively delaying packets in the scheduler due to limitations on the high priority rate, the
marking may be overruled at the scheduler. We therefore consider the markings to be ten-
tative, and introduce a mechanism by which the marker can specify whether a packet MUST
be sent with the marking it carries (and therefore should be delayed until it can be sent, e.g.,
SYN packets for interactive applications) or can be remarked if it exceeds a certain delay at
the scheduler (specified on a per-connection basis). In our simulations, the effects of this
mechanism are apparent only when the number of Web downloads per host is larger than 2,
where they give significant improvements in download times compared to the case without

remarking. We do not show results from these scenarios here.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 210

4.6.2 Output Link Scheduler

As previously discussed, the marked aggregate has to be shaped at the source to comply
with SLAs with the network. We describe in this section the mechanisms we designed and

implemented for this purpose.

Motivation

In order to comply with the MED and HIGH priority traffic limits that are placed on the
users, marked packets cannot be sent in the network as soon as they are generated by the
applications. Indeed, to avoid policing actions, they first have to be cleared by shapers that
follow the (token bucket) traffic conditioning specification agreed upon with the network.
This means that packets may have to be delayed (i.e. queued) at the source waiting for
enough tokens to accumulate.

Since a potentially large number of connections could be active at a source host, packets
from several connections may be queued waiting for tokens of a given priority. Providing
some fairness in the distribution of the tokens requires means to control the order in which
they are allocated to the different connections. Furthermore, given that different connections
may have different importance to the user, e.g. belong to different applications, it might be
necessary to prioritize the allocation of high priority tokens to the different sessions.

Consider the simplest approach to complying with traffic agreements, which is to shape
the traffic as queued in the network device buffer. Figure 4.17 shows the common case where
all packets are placed in the same (NIC) queue, and served in a first in first out order. In
this case, the transmission of the packet at the head of the queue would be regulated by the
token bucket that corresponds to the packet’s marking. However, this will clearly lead to
head of the line blocking (HOL), and may result in low overall throughput and unacceptable
performance for interactive applications.

In order to address these limitations, at least three queues, one for each marking, and a

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 211

I == =L T

Applicaction Application Application
class 1 class 2 class 3

i

MED token HIGH token
bucket bucket

* To network interface

Figure 4.17: Merging all packets in a single queue.

scheduler that services them are required. The scheduler would be tied to the token buckets,
resulting in a hybrid scheduler/shaper design. Clearly, many other designs are possible. In
the following sections, we define a framework for the designs, present several designs that
fall within this framework, and discuss their advantages, disadvantages and suitability for a
specific usage. We finally select the appropriate one for use in our simulations.

Before we delve into the different designs, we point to some issues associated with TCP,

and which need to be considered when implementing the scheduler.

TCP Issues

First, as indicated in Chapter 2, TCP is sensitive to packet reordering in the network, which
could erroneously trigger fast retransmits thereby slowing the sending rate and affecting
performance. Therefore, the service discipline of the scheduler should ensure that no appre-
ciable packet reordering occurs within the source station. When examining different designs

for the scheduling module, we pay particular attention to this issue.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 212

Second, the delay introduced in the scheduler may affect the retransmit timer. While
consistent delay would be eventually included in the timer computation, a sudden surge in
activity at the station may significantly delay packets and cause false retransmissions. As
discussed above, means for preventing performance loss due to large delays at the source
need to be implemented.

A third concern, related to delaying packets at the source, is a coupling in the throughput
of bidirectional transfers. Since acknowledgments are carried by data packets which could
be delayed, their rate may suffer as a result, and could unnecessarily throttle traffic in the
other direction. One solution for this problem would be to generate a pure ACK which
bypasses the clogged data queue, each time a data segment carrying a new ACK is queued.
Another solution would be to update the data segments that are sent from the queue with
more recent acknowledgment information. For example, the ACK field can be updated with
the highest value in the queue, or some intermediate value (e.g., no more than 2 MSS than
the last ACK value sent) in order to avoid large induced burstiness. This solution requires
an additional step to re-compute the packet checksum, and might have to re-compute the
[Psec encryption if used. Fortunately, transfers in most popular applications are heavily

asymmetric, and the cost of such solutions may be acceptable.

Design Framework

The general structure of a scheduler/shaper module is shown in Figure 4.18. We consider
three levels of aggregation for scheduling decisions. The top level corresponds to individual
connections, while the bottom level corresponds to the network interface device queue, i.e.,
the output link where all traffic merges. In between, a middle level of aggregation would
allow intermediate treatment of connections that can be grouped together according to some
criteria. This structure sets the framework for all the design variations possible. Within
this framework, the designs differ by the location of scheduling queues in the structure, and

the type of scheduler used to service these queues, resulting in different characteristics and

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 213

L L Sl mee

Application Application Application
class 1 class 2 class 3

- | [
O?

Y To network interface

Top (connection)
level

Intermediacte
(class) level

Bottom (interface) level

Figure 4.18: Framework for the scheduler module designs.

processing requirements. Note that it is not possible to implement a scheduler at one of the
three levels unless there are queues at the level itself, or at a higher level®.

For this study, where multiple application types are present at the sources, and without
loss of generality, we consider in the following discussion that connections are aggregated
into different classes based on application characteristics and interactivity (delay) require-
ments. We make the following design choices: we define 3 application classes, as in Section
4.5, in decreasing order of strict scheduling priority: highly interactive (Class 1), interac-
tive (Class 2), and non-interactive (Class 3). We use the term “connection class” inspired
from this classification, to denote grouping at the intermediate level in our discussion. In
other contexts, different groupings may be more appropriate. For example, in a Web server,
different classes of connections may be based on the connection’s destination (e.g., to differ-
entiate between paying and non-paying clients) or type of content they transfer. Different
class service disciplines may then be more appropriate (e.g., weighted round robin).

In the first design we consider, which is also the simplest in terms of scheduling, queues
are placed at the lowest level. As discussed above, three queues are needed to avoid head
of the line blocking. In this design, packets from all connections and carrying the same

%The socket buffers are not considered in this structure since the segments they contain do not carry
markings.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 214

marking are placed in the same queue. Therefore, no differentiation among connections
other than that resulting from the setting of the marking algorithm'’s thresholds is possible.
In the second design, the queues are moved to the intermediate level allowing an added level
of differentiation among connections, at the “connection class” level. In the third design,
queues are placed at the top level, i.e. one queue per connection is included in the scheduler.
Furthermore, the intermediate level is used to differentiate between classes of connections
by grouping the servicing of some connections together. This design is the most demanding
in terms of scheduling, where a complex packet selection decision is needed at each packet

transmission.

Design #1: Interface-Level Scheduling

In this design, packets from different connections are queued in three buffers at the bottom
level, corresponding to each of the three priority codes. The connection and class levels
contain no queues and therefore no scheduling. Conceptually, they consist of marking-code
based queue selectors and multiplexers, respectively. When TCP forms and sends segments,
these are marked and passed to the scheduling module. Priority-code based selectors place
the packets in the queue corresponding to each packet’s marking, as shown in Fig. 4.19.
Note that this design is similar to the one used for application-based differentiation (see

Section 4.3).

OPERATION

The scheduling rules for this design are very simple. Whenever the HIGH priority queue can
send, i.e. when the packet at its head is cleared by the HIGH priority shaper, the scheduler
gives it priority for accessing the link. Otherwise, if a packet can be sent from the MED
priority queue, the scheduler would send that packet. If no HIGH or MED packets can be

sent, a LOW priority packet would be sent, if any.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 215

U == =[0I Ry

Application Application Application
class 1 class 2 class 3
@ !‘:m @

Selector Selector

token HIGH token
bucket bucket

\Priori:y rlm.l:iplexe:/

§¥ To network interface

Figure 4.19: Interface-level scheduling.

ADVANTAGES

The advantage of this design is the simplicity of its operation and as a result, its low process-
ing requirements. In particular, unlike the other designs described below, the impact of the
shaping functionality on the complexity of the scheduler’s operation is minimal. Therefore,
this design may be most appropriate for servers serving connections of similar characteristics,
and connected to a high speed network link.

As mentioned earlier, this design solves the problem of head of the line blocking that
would have been caused by LOW priority packets being held behind high priority packets of

other connections (see Fig. 4.17).

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 216

DISADVANTAGES

The main disadvantage of this design is that there is no control on the share of tokens
received by each connection, or each connection class. A connection arriving “first” may
steal resources by queuing many packets while the other connections are idle. Similarly,
a group of such connections may receive a disproportionately large share of the resources
compared to others. Therefore, this design does not allow differentiation among different
connections, nor among different classes of connections. In addition, it is not possible to place
limits on the maximum delay in the scheduler for individual connections. These problems

may not be significant if:

1. this scheduler is used on a high-speed link, where delays in the queues are limited,

and/or

2. connections are of comparable type, and no particular differentiation is required in the
scheduling (i.e., the differentiation provided through different marking module settings

is sufficient).

However, the possibility of packet re-ordering, the seriousness of which depends on the
marking scheme used, is a significant problem with this design. If a connection generates a
sequence of packets that are marked differently, these will go into separate queues, and the
order in which they eventually emerge from the scheduler is not controllable. One way of
eliminating re-ordering is to prevent a connection from placing packets of a certain marking
until all packets with a different marking that are in the queues are sent out. This requires
some bookkeeping at the scheduler, and mechanisms for back-pressuring the connections,
the details of which we do not go into.

Finally, this scheduler suffers from a problem common to all designs which do not have
per-connection queues, which is that, when a connection is reset or otherwise closed, it is hard

to remove packets it previously sent, and that might still be in the queues. These packets

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 217

e b L b || = | I e

Application Application Application
class 1 class 2 class 3

MED token HIGH token
bucket bucket

¥ To network interface

Figure 4.20: Class-level scheduling.

would remain within the scheduler and therefore waste memory, processing an transmission

resources.

Design #2: Class-Level Scheduling

When queues are added at the intermediate level, class-based differentiation can be imple-
mented. In this design, packets from connections belonging to a class are queued in one
of the class’s three buffers, depending on each packet’s marking. The top level contains no
queues and no scheduling. It only performs a marking-code based queue selector function,
as shown in Fig. 4.20.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 218

OPERATION

The scheduler operates on the queues, according to the following rules. Starting with the
highest priority class, whenever the HIGH priority queue can send, i.e. when the packet at
its head is cleared by the HIGH priority shaper, the scheduler gives it priority for accessing
the link. Otherwise, if a packet can be sent from the MED priority queue, the scheduler
would send that packet. If no HIGH or MED packets can be sent, a LOW priority packet
would be sent, if any. If no packet can be sent at the highest priority class, the following
class is examined in a similar way, and so on until a packet that can be sent is found, or
the lowest priority class is checked and cannot send a packet. However, an additional rule
is needed in order to avoid violations of the order of priority. Namely, a low priority class
cannot send a packet at a certain marking level if a higher priority class is currently blocked
from sending at this level by the shaper. Otherwise, a low priority connection sending HIGH
priority packets can consume all the HIGH priority tokens if higher priority connections have
larger packets.

Ideally, the scheduler would be run at each packet transmission on the link. However,
it may also operate in batch mode, e.g., schedule a few packets at each time, in order to
amortize the scheduling costs. A new round may be started when the network interface card

buffer occupancy falls below a threshold.

ADVANTAGES

This design retains the advantages of the previous one. In addition, it allows control on the
sharing of resources by the different application classes. However, the scheduler needed is

more complex.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 219

=[H|. == == B

Application Applicat:on Applicacion
class 1

class 1

Scheduler
butfers

v
Priority Mulc:iplexer /< H H
-

update MED token HIGH tckan
bucket bucket

J To network interface

Figure 4.21: Connection-level scheduling.

DISADVANTAGES

This scheduler still suffers from some of the disadvantages of the earlier design. Thus, it does
not provide control on the share of marking and sending rate received by each connection, or
on the maximum delay in the scheduler for individual connections. Furthermore, the packet

re-ordering problem is also present, as well as the difficulty in clearing packets from closed

or aborted connections.

Design #3: Connection-Level Scheduling

In this design, per-connection queues are present at the scheduler. The scheduling module
operates on the individual connection queues, and sends packets according to priority rules,

WRR settings within a class, and token bucket profile for HIGH and MED packet priorities.

OPERATION

We use the following service discipline, shown in pseudo-code form in Alg. 2. If any HIGH

priority packet can be sent from a connection at Class 1, given the state of the shaper, it is

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 220

dispatched to the network interface. Otherwise, MED priority packets, if any, are checked,
followed by LOW priority packets. This service order is based on the assumption that HIGH
priority packets would have been delayed the most by the shaper and therefore should be
sent as soon as possible, followed by MED priority packets.

When all Class 1 connections are examined, and if no packet can be sent, Class 2 con-
nections are similarly checked. followed by Class 3 connections. These rules guarantee the
lowest delay for the highest priority class, and derive from the classification we assume. If
a packet is blocked waiting for a token of a certain marking priority at one class, no packet
can be sent with the same marking priority at lower classes. This prevents a lower priority
connection that uses a small packet size from starving higher priority connections.

Within one class, connections are served in a weighted round-robin fashion, which, along
with the marking thresholds, provides means for differentiation between connections belong-
ing to the same class. In particular, connections marked with higher threshold potentially
require a correspondingly larger share of the tokens, and the scheduler weights should be
set accordingly. An independent WRR scheduler is used for every marking code, in order
to to provide control on the allocation of each to the different connections within a class.
To avoid excessive blocking, the scheduler attempts to send the packet at the head of each
queue at a lower priority (i.e., after remarking it) if this packet has been queued for a time
longer than a certain threshold. Since such packets are more likely to belong to low priority
connections, this effectively means that these connections have a lower chance of getting
admitted to the network during congestion than high priority connections. In terms of user-
perceived performance, this user-oriented prioritized access to the network is superior to
non-discriminating “implicit” admission control based on dropping new SYN packets during
congestion (see for example [164]). Indeed, as argued in {52], such admission control mech-
anisms do not necessarily improve user-perceived performance, and may very well degrade
it.

In case no packet was scheduled for transmission, while a packet was cleared carrying

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 221

by the WRR scheduler of a class for either HIGH or MED marking, a timer is scheduled for
the closest possible transmission, given the token rate and current available tokens for each
of the two priorities. When the timer expires, the packet is sent if the corresponding bucket
has enough tokens. Note that the bucket needs to be checked because in the meantime a

smaller packet could have arrived and sent out, consuming some of the tokens.

Algorithm 2 Pseudo-code for scheduler.

for all classes: start at Class 1
round robin on class
if any HIGH packet cleared by WRR
if enough HIGH tokens available AND
no higher priority class waiting for HIGH token
send
exit
else
set HIGH-waiting[class] true
else if any MED packet cleared by WRR
if enough tokens available AND
no higher priority class waiting for MED token
send
exit
else
set MED-waiting(class] true
else if any LOW packet cleared by WRR
send
exit
else
schedule timer for earliest of
HIGH/MED if waiting for token
and no timer has been scheduled
for a higher priority class
repeat for next class

ADVANTAGES

This scheduler provides control on the sharing of output link resources and high priority

tokens among classes as well as among individual connections. In addition, having one

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 222

queue per connection prevents sending packets from one connection out of order, and allows
explicit control by the scheduler on the share of high priority tokens and output link resources
received by each connection. Furthermore, when a connection is closed or aborted, clearing
its packets from the scheduler is a simple matter.

Finally, this design can provide the “send at highest possible marking” and “max delay
in scheduler” options for individual connections, which can be very useful in some situations
(e.g., connections with small window but large throughput, allows ACK bypass for two-way
transfers, and avoids starvation when many high priority connections are active).

This scheduler therefore allows control on the differentiation between connections at the

source as well as in the network.

DISADVANTAGES

This design is clearly processing intensive. At at one extreme it would invoke the scheduler at
each packet transmission to get the next packet. Qbviously, this overhead can be reduced by
invoking the scheduler to get a batch of packets at each round (e.g. 10 msec of transmission
time worth). Depends on how costly it is for context switch and on how fast the output link

is (on a Gbps link, the transmission time of 1 full-size Ethernet frame is 12 microsecond).

Choice of Scheduler

The appropriate design differs with the type and function of the source station, and available
resources. For example, a 32 KB burst of data, which could easily be generated by a file
transfer, translates into a delay of more than 420 msec on a 600 Kbps DSL link, and about
26 msec on 10 Mbps Ethernet link. A Telnet packet queued behind such a burst would
clearly exceed the acceptable delay for interactivity for the first case, but not for the second.
This shows that the more limited the scheduled resources are, the more important it is to
have a strictly controlled access to these resources.

While the importance of regulating access to the link deceases as the link speed increases,

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 223

the rate of high priority tokens could be limited, and regulating the access to this resource
would prove beneficial, if not necessary.

Moreover, requirements in terms of processing and memory usage have to be satisfied,
and these depend on the type of end-station. For example, a host serving many connections
may find processing power necessary to implement a fine grain scheduler to be prohibitive.
In particular, a simpler scheduler (e.g., round robin among all connections) would probably
be more adequate for a large server which handles only one application class, such as a Web
server.

For the purpose of this study, where we focus on the network performance of different
types of TCP applications, we use Design #3 as a scheduler in our implementation'®. For

each connection, we specify the following scheduler settings:

1. class: this is the priority class that the queue belongs to in the scheduler. This should
not be confused with the class of service that the connection is going to be mapped
to in the network. The class assignment is based on the type of application starting
the connection, and is explicitly set for each connection. The effect of separating

applications into classes is important, and we study this aspect in the simulations.

2. weight: the connection’s share of scheduler resources at this class. This is trans-
lated into a weighted round robin scheduler weight within the class. By default, all

connections within one class have equal weights.

3. mazdelayy;cy: this is the maximum delay a HIGH priority packet can experience
within the queue before it is flagged as “anzious” where it can be sent as medium
priority in an attempt to speed up its delivery. This parameter can be set on a per-
queue basis. The queue is still examined by the (round robin) scheduler before other

queues within the same class which have a MED priority packet at their head. In other

%It might be possible to implement a similar scheduler in a firewall or network address translation (NAT)
box to improve the performance of different application sessions and to control the sharing of resources
among the users in a network. However, we do not go into the details of such usage in this dissertation.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 224

words, the marking is not changed until the scheduler can send the packet at MED
priority. We use a mazdelayyicy of 200msec in our simulations. Some packets can

be labeled in order to prevent their remarking.

4. mazdelaypep: this is the maximum delay a HIGH priority or a MED priority packet
can experience within the queue before it is flagged as “very anzious”. A flag is raised
to indicate that the packet can be sent as LOW priority when the queue’s turn arrives.
We use a mazdelayygp of 400msec in our simulations. We have not investigated
the performance effects of these parameters in detail, but some results show that these
values are adeq 1ate for cur purposes, and that the remarking can be useful particularly

for Class 3 connections (i.e., FTP).

Prior Work on Server Mechanisms for Service Differentiation

Server design and performance have been well investigated, with particular emphasis on
Web servers (see [26, 31] and the references therein). We focus here on work aiming at
providing different service levels at the source, an area which has recently seen an increased
interest from the research community. The benefits of providing multiple levels of service at
a Web server are numerous, including differentiating between different content types (e.g.,
HTML code vs images, real-time vs non real-time traffic), different clients (e.g., paying vs
non-paying) and different types of accesses {e.g., interactive by humans vs crawling by search
robots or caches) [65].

In [21], user and kernel level techniques for providing service differentiation at Web
servers are presented. The user level technique involves limiting the process pool of each
class of service. The kernel approach maps request priorities to process priorities in the oper-
ating system. The study finds that both techniques can provide the required differentiation,
but that the kernel level technique is more robust and better at providing differentiation

for high loads. The authors point to the limitations of such techniques, vshich reside in

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 225

the uncertainty within the operating system in the order of disk I/O and network systems
accesses. These mechanisms are further investigated in [65], where application-level differ-
entiation schemes for two levels of Web services, “regular” and “background”, are described.
To provide differentiation, the authors propose the use of three mechanisms at the operat-
ing system level: i) strictly limiting the background process pool size ii) lowering process
priorities and iii) limiting transmission rate. For the last technique, background processes
intentionally limit their sending rate. The mechanisms proposed do not rely on O.S. or net-
work level service differentiation. The study shows that when the network is the bottleneck,
limiting the number of processes and changing process priorities fail to protect “regular”
connections, while rate limiting techniques can. One limitation of the suggested rate control
technique is that, in the absence of “regular” traffic, background traffic cannot use the avail-
able link resources. Based on their results, the authors claim that, contrary to the earlier
work’s conclusion, no kernel modifications are needed at high loads.

In [60], a server design which provides the Web application with control on the order in
which the connections are scheduled is proposed. The authors consider three resources for
scheduling: (i) protocol processing, (ii) disk storage and (iii) network subsystem. Individual
connections access these resources in turn and, particularly in the case of the disk and
network subsystems, they might require several accesses to a resource, typically alternating
between these two subsystems. Connections which need to access a certain resource are
placed in a corresponding queue, and the order in which they gain access to the resource
is determined by the Web server. The authors use this design to show that a Shortest
Remaining Processing Time (SRPT) scheduling of queued connections, i.e. giving priority
to connections that are transferring short files, decreases the average service time in the
system. However, this study uses a loss-free network and therefore does not consider the
effects of different paths and congestion on the response time of connections. Indeed, the
time a connection spends in the network subsystem is largely determined by the interaction of

TCP with network conditions. Furthermore, this scheme requires knowledge of the transfer

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 226

size for each connection, which is not always possible, e.g., for dynamically generated content.
Another study of scheduling techniques for Web page requests focused on improving user-
perceived performance through differentiation among requests based on their importance
(a priority level is associated with each page), and possibly the class of service the client is
subscribed to [36]. The authors propose assigning deadlines to requests based on the criteria
above and implementing an earliest deadline first scheduling of tasks at the servers.

Our design extends these works to provide combined host-level and network-level differ-

entiation among different connections.

4.6.3 Results

We implemented the source marking and scheduling mechanisms described above in the
simulator, and validated their performance through extensive simulations, for a variety of
topologies and traffic scenarios. In this section, we present sample results which illustrate the
performance improvements made possible. We show first that the TCP-state based approach
provides similar improvements in interactive application performance to application-based
differentiation. Then, we show that the performance of other applications (e.g., FTP) is not
significantly affected. Finally, we present scenarios where the performance of such applica-
tions can be improved using the same mechanisms.

In the scenarios considered, the following settings were used for all HTTP and FTP con-
nections: HIGHresh = 4 and M EDgj,osn = 8, and acknowledgments are marked with the
priority of the data they correspond to. Since in these scenarios all connections are identically
marked, equal weights within each application class are used in the scheduler (therefore, a
simple round robin scheduler would have been adequate). In Fig. 4.22 we plot the HTTP/1.0
CCDF for TCP-state based differentiation, for the same experiment as in Sections 4.3 and
4.3. In this case, as the bottleneck link is increased to 60Mbps, all Web downloads complete
within desirable delay limits, and with a high degree of predictability. We compare the page
download times for TCP-DS and DT in Fig. 4.23 for a 60Mbps bottleneck link speed and

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 227

10

Complementary CDF of Page Download Times
s

‘04 L 5 1 L 1
0 5 10 15 20 25 0 35 40 45 50

Page Download Time in Seconds

Figure 4.22: CCDF of HTTP/1.0 downloads for different bottleneck speeds, HIGH rate
250Kbps, MED rate 500Kbps.

different bottleneck buffer sizes. In contrast to those for DT, the curves for TCP-DS show
good performance and are very close across the whole range (125KB to 20MB), indicating
that the application’s performance is decoupled from the buffer size. Nevertheless, for large
buffer sizes the higher queuing delays do push the curve toward longer download times.

In Fig. 4.14, the Telnet performance for this approach (TCP-DS), shows slightly more
delays than application-based (800 vs 700msec), due to generally higher queue occupancy.
CCDFs of Telnet echo delays for a 120msec RTT connection, with a 60Mbps bottleneck link
and different bottieneck buffer sizes are shown in Fig. 4.24. The impact of longer queuing
delays associated with larger buffers on Telnet’s performance is clear in this graph. The
results show that for acceptable performance (e.g., echo delays below 200msec), the buffer
size needs to be smaller than 2MB.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 228

HTTP/1.0, Al Users, DT vs DS, 60Mbps

T L] T T T T

10

—
o
L

Complementary CDF of Download Times

= -
-g--

®

A

»

’,

1
20 25 30 35 40 45 50
Page Downioad Time in Seconds

Figure 4.23: CCDF of HTTP/1.0 downloads for different bottleneck buffer sizes, comparing
DT (dashed lines) and TCP-DS (solid lines).

A summary of performance results for interactive applications is shown in Fig. 4.25. In
these figures we show the performance of drop tail, RED, application-based differentiation
(for 250K and 110K MED rates), TCP-state based differentiation (regular and randomized),
and token bucket marking at edge routers (ER-TBM, 250Kbps HIGH and 500Kbps MED), for
a 100Mbps bottleneck link. The ideas illustrated here are the following. The applications’
performance without service differentiation are comparable, whether drop tail or RED buffer
management are used. In addition, marking of user aggregate traffic at the edge router with
a token bucket marker, the standard approach for the AF service, does not result in adequate
performance, even when all connections face the same network conditions as in the scenarios
presented here, and may actually give worse performance than drop tail and RED. In general,

different connections originating from the same source and going to different destinations

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 229

o Teinet, RTT 120msec, biink 60Mbgs, TCP-DS
10

Complementary COF
3
L]

10

10
Echo Delay in Seconds

Figure 4.24: CCDF of Telnet echo delays for different bottleneck buffer sizes, 120msec RTT
connection.
may face different network conditions. In this case, a long transfer going over an uncongested
path and performing significantly better than the other connections would receive most of
the high priority markings at the router. This denies the benefits of differentiation to the
connections that need it most. By explicitly selecting the packets to be prioritized, TCP-
based differentiation provides good performance to interactive applications, similarly to
application-based differentiation. Finally, the randomization in TCP marking does not have
a large impact. Indeed, extensive simulations have shown that, although it results in better
performance for HTTP/1.1 and file transfers in some cases, its effects are not quantifiable.
Therefore, the use of the simpler algorithm is sufficient.

An advantage of the TCP-state based approach over application-based differentiation is

that lower priority applications are not heavily penalized. Overall, the tail of the CCDF of

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 230

HTTP/1.0, All Users, Btink 100Mbps, Comparing Schemes

¥ L3 T v L3 L] ¥

Complementary COF of Page Download Times

10-3 L ! 1 h 2 L I L
0 -] 10 15 20 25 0 35 40 45 50
Page Downioad Time in Seconds

Teinet, 80msec RTT, Biink 100Mbps, Comparing Schemes

L

L3

¥

T

[}
-

Complementary CDF of Echo Delays
=

TCP-DS
¢ TCP-RAND

/ APPL-110K
_ APPL-250K

10 -- '] 1 . L

[} 0.1 0.2 0.3 04 05 06 0.7 08 09 1
Echo Delay in Seconds

Figure 4.25: CCDF of HTTP/1.0 downloads and Telnet echos for different schemes.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 231

Number of FTP Tansfers, Comparing Schemes
10 ¢

APPL-110K

Number of Files Transfered

10 L . 2 L]
40 60 80 100 120 140 160
Bottieneck Link Speed in Mbps

Figure 4.26: Number of files transmitted by the probes for different schemes.

all FTP transfer times is very close to that of drop tail and RED (without differentiation),
as shown in the top graph of Fig. 4.27. In addition, the performance is comparable in
terms of the number of files transmitted per unit of time (see Fig. 4.26). In contrast, the
performance of FTP for the application-based approach at link speeds lower than 75Mbps
is very poor. Moreover, as can be seen in Fig. 4.27, the transfer times are made more
predictable for individual users. These improvements are obtained because important FTP
packets are prioritized as well. This means that users who are exclusively using such appli-
cations are not unduly penalized to the benefit of others. Note that token bucket marking
(with HIGH token rate at 75Mbps divided by the number of users, and MED token rate at
twice that rate) at the router results in poor performance at low bottleneck link speeds to
application-based differentiation, even for file transfers. Fig. 4.28 shows the CCDFs of file
transfer times for a 60Mbps bottleneck, for different bottleneck buffer sizes. The curves

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 232

FTPs, All users, Btink 75M, Comparing Schemes

10

Complementary CDF of File Transter Times
=

-2 N

10’ 10
File Transter Time in Seconds

FTPs, 80msec RTT, BW 7SMbps, Comparing Schemes

*
-

-
o

APPL-110K

Complementary CDF of File Transter Times

107 : L
10° 10' 10°
File Transfer Time in Seconds

Figure 4.27: Comparing the CCDFs for 200KB file transfer times of different schemes, for a
75Mbps bottleneck link. The bottom graph shows the curves for an individual connection
with 80msec RTT.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 233

10 - MU
: -~ 125K |1
—— 250K |1
-~ 500K
{8~ IMB | 1
-»- 2MB | |
- 5MB
@ -p- 10MB | |
g -9~ 20MB
e
5
g
-
-1
& 10" 5
o
>
s
102 .
10° 10’ 10

File Transfer Time in Seconds

Figure 4.28: CCDF of FTP file transfers for different bottleneck buffer sizes.

improve as the buffer size is increased from 125KB to 5MB, however the improvement is not
very large. For 10MB and 20MB buffers, the transfer times show more significant improve-
ment. However, as shown above such buffer sizes are much larger than the limit for good
interactive applications performance. This clearly shows that increasing router memory re-
sources does not necessarily improve application performance, and motivates the need for
service differentiation in network bottlenecks.

In addition to improving interactive applications’ performance, the TCP-based mech-
anisms can be used to improve the throughput of long FTP connections, and reduce the
variations due to differences in RTT. To illustrate this, we consider scenarios where each
source-destination pair performs one long FTP transfer (FTPlong). In Fig. 4.29, the average
throughput of an FTP connection with a 200msec RTT, is plotted against the HIGH prior-

ity threshold value used for its marking (the MED priority threshold is set at twice that

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 234

Long FTP Average Throughput, 200msec RTT

1 T T T T

T T L

os| Thipt, JCP-DS. 100Mbps 1

o
[
T

Thrpt, TCP-DS, 200Mbps

o
ﬂ
Y

o
*»

e VARcoeff, DT, 100Mbps
T~eg--Yo-~

- . - — o = - - -
T - - -

o

o

Average Throughput Normalized to Fair Share
o

-
T~e--Z8%---0-"_ _ _ _ VAcoett, TCP-DS. 200Mbps _
0. ~, _--8 N B---8
e - ~
‘-—--.--—-.—-—-0-——-
VARCoett, TCP-DS, 100Mbps
01
o i L 1 L 1 e te 2
2 4 8 8 10 12 14 16 18 20
HIGH prionty threshoid in packets

Figure 4.29: Long FTP throughput normalized to fair share as a function of the marking
thresholds.

value), for no differentiation (drop tail queues - DT) and TCP-state based differentiation
(TCP-DS), and for 100Mbps and 200Mbps bottleneck link speeds. The threshold values for
the other connections (with different RTTs) are fixed at values determined through similar
experiments. Clearly, the throughput achieved for drop tail is independent of the marking
algorithm settings. On the other hand, as the thresholds are increased, the connection’s
throughput reaches more than 85% of its fair share for TCP-DS, compared to less than 50%
for drop tail, and stabilizes. The plots for the other connections (not shown here) indicate
that they all achieve throughput close to their fair share at this stage. In other words,
with similar network agreements, users with considerably different RTTs can independently
achieve comparable throughput. Furthermore, the protection of sensitive packets results

in smoother performance. Indeed, the variation coefficient (%ﬁ%"-) of throughput samples

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 235

Long FTP Instantaneous Throughput, RTT 200 msec, Biink 100Mbps

04r

Data throughput in Mbits per second
o
[

Figure 4.30: Long FTP throughput vs. time for DT (dashed lines) and TCP-DS (solid lines).

for TCP-based differentiation is typically less than half that for regular (drop tail DT or
RED) queues, as shown by the dotted lines in the figure. This translates into a relatively
steady throughput during the lifetime of a connection, as apparent in Fig. 4.30, where the
connection’s throughput, sampled at 2 second intervals, is plotted for TCP-DS and DT over a
100 second period. Clearly, the throughput for TCP-DS has little variation around the mean,
with no idle periods, in contrast to the one for DT. This would perhaps make it possible to

use TCP for non-real time streaming applications, such as video on demand.

CHAPTER 4. IMPROVING INTERACTIVE TCP APPLICATIONS 236

4.7 Summary

In this chapter, we focus on congestion-induced delays in response times of interactive TCP
applications. We show that these delays cannot be reduced merely by adding buffering re-
sources in bottleneck nodes. Moreover, we show how they can be reduced using multiple
service levels in the network, by giving preferential treatment to interactive applications’
traffic in the network. We study an application-based and a TCP-state based approach to
service differentiation, and describe the mechanisms required in the network and in traffic
sources. Using simulations, with a large number of users and realistic traffic models, we
show that both can achieve the goal of improving the performance of interactive TCP appli-
cations during network congestion episodes. Good user-perceived performance is obtained
at times where severe degradation would have otherwise been experienced. In addition, by
allowing other applications to use the high priority levels, the TCP-state based approach
has the benefit of limiting the performance degradation they incur. Finally, we show how
the performance of non-interactive applications can actually be improved using the same set

of mechanisms.

Chapter 5

Integrated Support of TCP and UDP

Applications

In the previous chapter, we considered a network where all traffic is carried by TCP. While
this might largely be the case in today’s Internet, we envision a future where the Internet
is a ubiquitous communication network, carrying all traffic types: audio, video and data. A
number of questions naturally arise when considering the appropriate means for supporting
these traffic types. First, how do they affect each other when mixed in the network? Then,
what mechanisms are required in the network and end hosts in order to support them in an
integrated fashion, whereby the requirements of each would be satisfied? In this chapter,

we attempt to answer these questions for the case of video and data.

5.1 Introduction

The transmission of high quality video over the Internet has yet to become a reality. In-
deed, the Internet currently provides a “best effort” service, where high delays and packet
loss are frequent occurrences. Such conditions are challenging for video transmission, since

compressed video is highly sensitive to packet loss, and real-time video applications, such as

237

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 238

video-conferencing, require low delays as well. Nevertheless, the advantages of a combined
network carrying data as well as video (and other media) are such that a great deal of work
has looked at the interaction of these two traffic types in the network. However, these efforts
have typically been either data-centric or video-centric. Data-centric studies are commonly
concerned about the effects of UDP streaming applications on the performance of TCP
data applications. In particular, such studies fear the impact of UDP streams which do not
implement congestion control on the performance of TCP connections, and the network in
general. These studies often recommend that such streams either be penalized, or be made
to implement TCP-like congestion control mechanisms [84, 199|. In contrast, video-centric
studies consider TCP traffic to be bursty and aggressive, and a cause of packet loss. To
obtain good video quality in such conditions, video-centric studies resort to loss recovery
mechanisms which include retransmissions and adding redundant information for error re-
covery [39, 95|. These mechanisms typically increase the video traffic load on the network.
However, since both of these traffic types belong to legitimate applications, they ought to
be adequately supported in the network. This is the position taken in this study, where we

attempt to answer the following questions:

1. How do TCP and video traffic affect each other when mixed in the same queues in the

network?

2. If TCP and video traffic are separated in different queues, how sensitive is their per-

formance to the setting of the queue scheduler?
3. What benefits can be obtained using queues with multiple packet drop priorities?

4. What are the benefits of separating the two traffic types, and using a multiple drop

priority queue for each?

To answer these questions, we use computer simulations with realistic application traffic,

where we assess the performance of each application using user-perceived quality measures.

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 239

Thus, we use real MPEG-2 traces to generate video traffic, and implement TCP application
models which faithfully reproduce the important aspects of their operation. For performance
assessment, we compute a perceptual distortion metric based on a model of the human visual
system for the MPEG-2 video [227], and obtain user-level transaction time measures for TCP
applications.

The rest of the chapter is organized as follows. In Section 5.2, we describe the simulation
setup used for this study. Section 5.3 reviews prior work on the support of video streaming
in the Internet. In Section 5.4, we start by examining the performance of TCP and video
applications when the two are mixed in one “tail drop” queue, which does not implement
drop priorities. Then, we consider the case where they are separated in two different queues.
In Section 5.3, we investigate the performance benefits made possible by the use of service
differentiation in the form of multiple drop priorities, both when the two traffic types are
mixed in one queue and separated in two queues. Finally, we summarize our observations

in Section 5.6.

5.2 Simulation Setup

This study relies on computer simulations using ns. In this section, we describe the network
topology, traffic sources, and performance measures we use. We irst describe the network
scenario, which is a slightly modified version of the one used in the previous chapter. In
particular, we use larger link speeds to accommodate the high bandwidth video traffic. In
terms of traffic sources, we capitalize on the setup for data application developed in Chapter
4, and make use of the same models and performance measures in this study. For the video
traffic, we describe the MPEG-2 traces and the user-perceived performance measure we

compute.

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS

100MDPS 100

Figure 5.1: Network Topology.

5.2.1 Network Scenario

240

To illustrate the impact of congestion on the various applications, it is sufficient to consider

one network bottleneck, shared by all connections. We therefore use a symmetric, multi-hop

tree topology, shown in Fig. 5.1, where sources and destirations are communicating across

the bottleneck. We use relatively large speeds (10Mbps) for the links between users and

routers to accommodate the high bit rate of video sources. The router-to-router links have

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 241

typical speeds, which are large enough to accommodate the aggregate traffic they are made
to carry in the simulations. The bottleneck link speed is varied in the scenarios. Unless
otherwise noted, the topology we use in this study contains a total of 400 hosts, organized

in 200 source-destination pairs, as follows:

1. At the lowest level, ten users are connected to every 1% level router, each with a

10Mbps (e.g., Ethernet) link.

2. At the second level, five 1% level routers are connected to each 274 level router, with
45Mbps (e.g., T3). This gives a potential bottleneck with a speed ratio of 2.2 to 1

between the aggregate of user links and the uplink of the 1% level (access) router.

3. Four 2™ level routers are connected to each bottleneck router with 100Mbps (e.g.,
Fast Ethernet) links. This gives a potential bottleneck with a speed ratio of 2.25 to 1
between the aggregate of 45Mbps access router uplinks and the uplink of the 2nd |evel

router.

The simulated network only needs to capture the main aggregation points and potential bot-
tlenecks of a larger, more complex network. Therefore, each link in the topology effectively
represents several actual links, as well as the intermediate nodes. Hence, the propagation
delay of each link in the simulation accounts for the transmission and propagation delays
on the links it represents, and the switching delay in the intermediate nodes. The delays for
the different links in the topology are selected to lead to a mix of round trip times between
different source-destination pairs (20, 40, 80, 120 and 200msec), thereby covering a wide
range of RTTs, from metropolitan to inter-continental. Each group of 10 users at the lowest
level of the tree contains 2 users with each of the different RTTs.

In order to generate network congestion at levels similar to those seen in the Internet,
and since the number of flows in the simulation is limited, we use buffers that are smaller

than what is common in commercial equipment. Unless otherwise noted, on the 10Mbps,

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 242

Drop priority | Queue occupancy threshold for drop |
HIGH 100%
MED 60%
LOW 30%

Table 5.1: Threshold values for the different drop priorities.

45Mbps, 100Mbps and bottleneck links they are 128, 128, 250, and 500 packets, respectively.

5.2.2 Priority Dropping

In this study, we consider the same QoS framework as in the previous chapter, and make
use of the service differentiation mechanisms introduced there. However, we use a slightly
modified form of the priority dropping buffer management scheme, based on instantaneous
queue sizes and no random drop. As shown in Section 5.5, such queues perform better than
ones which use average queue sizes and early random drop functions, particularly for video
traffic.

We compute three instantaneous queue sizes, one for each drop priority (HIGHgueue,
MEDgeye and LOWgyeue). When computing the queue size for a certain priority, packets
that are at this priority level or lower are counted. For example, when computing LOW gycue-
all packets are counted. Packets of priority level X are dropped when the corresponding
queue size exceeds a threshold Xihresn. The threshold values used in the simulations are

shown in Table 5.1.

5.2.3 Traffic Models

We use the models for Web, Telnet and FTP, described in Chapter 4. We generate traffic
from these applications in similar proportions as in the previous chapter, which attempt to
roughly approximate their share in real networks, across the range of bottleneck links used.

We describe below the video traffic sources we use.

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 243

Sequence | Length | Bit rate
barca 4sec 6.15Mbps
flower dsec 5.95Mbps

baseball | 14.84sec | 3.9Mbps
basket 8.8sec | 7.2Mbps

Table 5.2: Bandwidth characteristics of the Video traces used.

Video sequence ¢1 video sequence #2 Video sequence $3
=7 F— = cime

Figure 5.2: Video traffic used in the simulations. A video stream is formed by concatenating
different video sequences.

Video Traffic

To generate video traffic, we use actual MPEG-2 video traces. These correspond to short
scenes (namely barca, flower garden, baseball and basketball), which are encoded using the
Open-Loop Variable Bit Rate (OL-VBR) scheme. The length and bit rate of these sequences
are shown in Table 5.2. The OL-VBR encoder uses a fixed quantization scale (e.g., 16 for
our traces), which results in variable (bursty) traffic. Since the characteristics of video traffic
depend on the nature of the scene being encoded, we choose sequences obtained from scenes
with different spatial and temporal complexity.

A video stream is formed by concatenating different sequences, as shown in Fig. 5.2. In
order to introduce randomness in the generated stream, after transmitting every sequence,
each video source waits for an exponentially distributed random time period T (with 1
second average) before sending the next sequence in order. Then, the video packets thus
transmitted are carried in the network where they may incur loss. At the destination, the
received video stream is reconstructed, and decoded. Error concealment is applied during
the decoding process. The resulting video is compared to the original to assess its quality

and a quality metric is computed. A system view of this process is shown in Fig. 5.3.

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 244

5-Excellent
3-Good
3-Fair
2-Pocr
1-Bad

Digitized video

Encoding Erzor
concealnent
— "
Decoding

Packgt:zation
3

IBCJDCJ o oda

Depacket:zar:ion
Y

Figure 5.3: System view of video transmission and performance evaluation.

The video quality metric consists of a perceptual distortion metric (PDM) based on a
model of the human visual system [227]. This metric was shown to highly correlate with
subjective evaluations of video quality in tests carried by the Video Quality Experts Group
of the ITU. The metric is then converted to an ITU-500 rating [118], ranging from 1 to 5,
where 1 is poor and 5 is excellent, and the desirable quality range is 4 to 5. We consider
that sequences which incur heavy loss and cannot be decoded have a quality of 1. When
presenting results, we compute the video quality for two of the sequences, namely barca and

flower, which have a comparable starting quality after encoding of about 4.5.

5.3 Prior Work on Video Transmission in the Internet

In this section we summarize the main results of prior work on the transmission of video in
the Internet. As mentioned earlier, “plain” compressed video is highly sensitive to packet
loss. Typically, good video quality requires packet drop rates to be in the order of 10~3 or
lower [93]. In addition, some video applications have low latency requirements as well. Given
the “best effort” service currently available, where all flows are merged in the same queue,
guaranteeing low delay is not possible. For this reason, most works focus on addressing the
problem of packet loss, leaving the problem of delay, which requires traffic differentiation,

to be solved later.

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 245

In the sections below, we first present basic background information on video compres-
sion. Then, we discuss the different approaches taken to address the problem of video packet

loss in the Internet.

5.3.1 Background on Video Compression

Video is highly amenable to compression, due to spatial and temporal redundancy in video
frames. We present here a brief overview of video compression, focusing on MPEG-2, which
we use in this study. This section is loosely based on [32].

The first step in encoding is the digitization of the video signal, whereby each video
frame is sampled to give a number of picture elements (pixels). Pixels can be of three types,
luminance, red chrominance and blue chrominance. MPEG-2 divides a frame into blocks,
8x8 pixels each. Blocks are further grouped into macroblocks, each 16x16 pixels, which are
the smallest unit used by the coding algorithm. The chrominance components have half
the vertical and horizontal resolution of the luminance component, therefore a macroblock
consists of 4 luminance blocks, 1 red chrominance and 1 blue chrominance block.

Macroblocks can be either intra-coded or inter-coded. Intra-coded macroblocks are pro-
cessed using a Discrete Cosine Transform (DCT), zig-zag scanning, adaptive quantization
and variable length coding, which exploit spatial redundancy. The compression scheme also
takes advantage of temporal redundancy, by means of motion compensation and differen-
tial encoding. Thus, inter-coded macroblocks are specified using motion vectors, which are
estimated from another picture, and an encoding of the differential error compared to the
reference macroblock.

MPEG-2 defines 3 types of pictures: Intra-coded (I frames), Predictive coded (P frames)
and Bidirectionally predictive coded (B frames). I-frames contain all the information re-
quired for their decoding, and are used as references for the predictive coded frames (P and
B). B pictures use motion vectors estimated from the previous as well as from the next

picture. Since the P and B frames are coded with motion compensation and prediction, a

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 246

reduction in the frame size is achieved. However, this introduces dependency among the
different frames in a stream, which means that errors in one frame tend to propagate to
other frames. For this reason, compressed video is highly sensitive to packet loss, where a
loss rate of no more than 1% can result in completely unacceptable quality, even when error

concealment is employed.

5.3.2 Techniques for Dealing with Packet Loss

In this section, we briefly present the different approaches proposed for addressing video
packet loss. Note that these approaches can be used separately or in concert, in addition

to techniques for error concealment at the receiver, which help limit the perceived effect of

loss.

Compression

In order to limit the sensitivity of compressed video to packet loss, one approach is to sacrifice
some encoding efficiency for the benefit of increased error resilience. For example, a tech-
nique called “Conditional Replenishment” provides robustness against temporal propagation
of errors by avoiding temporal prediction, and intra-coding macro-blocks which change more
than some threshold compared to the previous frame [154]. This results in a more resilient
but larger bandwidth encoded stream than using MPEG compression. In [39, 142}, it is
proposed that the decision on whether to inter-code or intra-code frames be also based on
the state of the network, obtained through feedback from the receiver. Another technique
for improving error-resiliency is proposed in [226], where the predictive encoding is based on
multiple previous frames as opposed to only one. This increases the destination’s chance of
receiving a reference frame for motion compensation, and therefore of decoding a given pre-
dictive coded frame. Note that these techniques target real-time video encoding as opposed

to pre-encoded video.

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 247

Forward Error Control (FEC)

Another approach to increasing the error resilience of compressed video is to include redun-
dant information in the transmitted stream, which allows error correction at the receiver.
For example, in [39], a FEC scheme is proposed, which includes (lower definition) redundant
information in each packet about macroblocks sent in a number of previous packets.

The main advantage of FEC is that it does not add latency to the transmission, and is
therefore attractive for real-time video. A disadvantage of this technique is that it can add

a significant overhead to the video stream if it were to deal with large packet loss rates [95].

Retransmission

Clearly, lost data can be recovered through retransmission, if the receiver is able to send re-
transmission requests to the sender. This technique is typically called Automatic Repeat on
reQuest (ARQ). Retransmission, which requires at least one round trip time delay to correct
loss, is particularly attractive for applications which do not have strict delay requirements.
For example, a retransmission scheme is proposed in {95], where negative acknowledgments
are used to convey loss information, which is used by the sender to refresh image regions

affected by loss, in order to reduce the temporal propagation of errors.

Layering

Video “layering” or “scalability” exploits the fact that different data within a stream con-
tribute differently to video quality. Thus, low frequency DCT coefficients, motion vectors
and start codes, which are necessary for decoder synchronization, are critical for decoding
the video bitstream, and the loss of such data results in drastic quality degradation. By
protecting them in the network, the resilience of video to packet loss is greatly increased.
Protection can be achieved in many different ways. For example, such data can simply be

transmitted redundantly, by sending multiple copies of the same packet [55]. Clearly, this

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 248

scheme may considerably increase the bandwidth required. Another approach is to use un-
equal FEC protection, whereby more redundancy is used for these elements (see for example
[107]). This results in significant bandwidth savings compared to uniform error protection
across the whole bitstream. Another suggested approach is the use of a reliable transport
protocol (e.g., TCP) to transfer these data [55]. This approach is only applicable when the
throughput achievable by TCP, given the packet loss rate in the network, is large enough to
transfer the data on a timely basis. It is also possible to decrease the loss rate for important
data through selective retransmission [70]. However, this technique can recover lost data
only for limited loss rates. Finally, when service differentiation is available in the network,
e.g. in the form of multiple drop priorities, the different layers of data can be mapped to
different drop priorities. We use this approach in our study, based on work published in
(132}, which utilizes MPEG-2’s Data Partitioning scalability mode. In this work, all pos-
sible combinations of mapping the different data elements from I, P and B frames to drop
priorities are examined, and a select set of mappings which provide superior performance are
identified. Data partitioning, along with prioritized dropping in network buffers is shown to
provide graceful quality degradation with packet loss in the enhancement and middle layers
[132]. These layers may incur large loss without significant quality degradation. On the
other hand, the base layer is very sensitive to packet loss, as in the non-layered case. The
advantages of data partitioning are low overhead, simplicity and usability for pre-encoded
video. In this study, we use one of the superior mappings' selected in [132], which assigns
different parts of the I, P and B frames to 3-drop priorities or layers, namely base, middle
and enhancement, where the highest priority layer is the base layer. The corresponding bit

rates for the sequences we use are shown in Table 5.3.

'In particular, we use the (036,156) drop codes triplets.

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS

Sequence | Base Layer | Middle Layer | Enhancement Layer Total
barca 2.3Mbps 1.45Mbps 2.4Mbps 6.15Mbps
flower 2.5Mbps 1.35Mbps 2.1Mbps 5.95Mbps

baseball | 2.25Mbps 0.55Mbps 1.1Mbps 3.9Mbps
basket 2.8Mbps 1.4Mbps 3.1Mbps 7.2Mbps

249

Table 5.3: Bandwidth characteristics of the layered video traces used in this study.
5.4 Tail Drop Queues

In this section, we discuss the performance of TCP and video applications when using regular
tail drop queues, which drop packets when the buffer is full, as in the current Internet.

Unless indicated otherwise, the traffic scenario we consider here and in the following
sections is as follows: 20 out of the 200 hosts are video sources, while the remaining 180
are data application sources. The video sources for which we compute the quality metric
alternately send the barca and flower sequences, which have different characteristics but
comparable average rate of about 6Mbps. For ease of presentation, in the following scenarios,
we let the rest of the video sources send the same traces as well. We have validated these
results with simulations where background streams alternate between the 4 different traces
described above. Each data source has an active Telnet session, a Web client, and an
FTPshort client at the corresponding destination host. Both HTTP implementations are
considered, where one half the clients use HTTP/1.0 and the other half use HTTP/1.1. In
this study, we show results for HTTP/1.0, noting that similar results apply for HTTP/1.1.
The approach we follow consists of estimating the bandwidth needs of video and TCP
applications separately, then consider the required bandwidth when they are mixed in the
same queue, or separated in different queues.

In the first section below, we start by considering each traffic type alone, and assess its

bandwidth needs, given the traffic scenario above.

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 250

5.4.1 Assessing Bandwidth Needs

In order to assess the bandwidth needs of each traffic type, we only enable the correspond-
ing sources. We then vary the bottleneck link in the topology, and determine the lowest

bottleneck speed for which the requirements of the relevant applications are met.

TCP Applications

For data applications, our goal is to meet the requirements of the interactive TCP appli-
cations, namely Telnet and Web. For good Web page downloads performance, we consider
that no more than 10% of downloads should exceed 5 seconds (the limit below which the per-
formance is considered good), and none should exceed 10 seconds (the limit beyond which
delays are considered too large). For Telnet, we consider that performance is acceptable
when only 1% or so of the echo delays exceed 200msec.

The results obtained are shown in Fig. 3.4. In the top graph, we plot the CCDF of
download times for HTTP/1.0, that is, the fraction of downloads that exceed a certain time.
Several curves are shown, corresponding to bottleneck link speeds ranging from 10Mbps to
75Mbps. This graph shows that a bottleneck link of 60Mbps is sufficient to provide good
user-perceived quality for Web downloads. The results for HTTP/1.1 are not shown, but
indicate that, as expected from the results presented in Chapter 4, a smaller bottleneck
(50Mbps) would be sufficient in this case. The CCDF for Telnet echo delays, shown in the
bottom graph, confirms that 60Mbps provide acceptable echo delays as well. Therefore, we
conclude that the TCP sources in our scenario require 60Mbps to perform well. We note

that the packet drop rate corresponding to a link speed of 60Mbps is found to be 1.8%.

Video

We repeat the same process used for TCP applications to assess the bandwidth requirements

of the video sources. In Fig. 5.5, we plot the CDF of sequence quality within a sample video

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 251

HTTP/1.0, All users, DT, TCP Alone

Complementary COF of Page Downioad Times

0 5 10 15 20 25 30 35 40 45 50
Page Downicad Time in Seconds

Teinet Echo Delays, RTT 80msec, TCP Alone

3 ¥ v \J T T

Complementary COF of Echo Delays
=

10 > - H- g
o] 0.1 02 03 04 0.5 0.6 07 08 0.9 1
Echo Detay in Seconds

Figure 5.4: Assessing the bandwidth needs of TCP sources alone, without video traffic.

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 252

stream, that is, the fraction of sequences within the stream whose computed quality metric
falls below a certain quality level. Several curves are shown, corresponding to bottleneck
link speeds ranging from 105Mbps to 120Mbps. As noted earlier, we require that video
quality be between 4 (good) and 5 (excellent). The graph then shows that the video sources
alone require 120Mbps to achieve good quality. This is not surprising, given the fact that
there are 20 video sources, each sending a variable bit rate stream with an average rate of
about 6Mbps (when factoring in the inter-sequence gaps), and that video requires the packet

drop rate to be very low. As shown in the graph, the packet drop rate corresponding to the
120Mbps link is 2 x 10—,

4
0
T

o
[
T

©
<
T

g
[
T

[=]
&
]

CDF of Sequence Quality Metrics
&
L

o
W
Y

o
(]
T

4
-
L)

J & L L 1 L L] L L
1] a5 1 15 2 25 3 35 4 45 5
Sequence ITUS00 Quality Metric

Figure 5.5: Assessing the video traffic bandwidth requirements alone, without TCP traffic.

Now, the question which naturally arises is: what bandwidth would be required if the
two traffic types are mixed together in one queue? In particular, we would like to know

whether the sum of the requirements, i.e. 180Mbps, would be sufficient. Before we proceed

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 253

to answer this question, we note that the packet drop rates which correspond to good quality
for TCP and video are different by several orders of magnitude. This leads us to expect that
video traffic is more likely to be affected than TCP traffic when the two are mixed on a link

with bandwidth equal to the sum of the individual requirements. We test this hypothesis in

the following section.

5.4.2 Mixing TCP and Videc Traffic

In this section we consider the case where TCP and video traffic are mixed in drop tail
queues. In this case, we use buffers which are double the size of those used when the two
traffic types were separated. In the top graph of Fig. 5.6, we plot the Web download times in
this case, for different bottleneck link speeds. The curve corresponding to 180Mbps, which
is the sum of the requirements obtained in the previous section, shows that Web downloads
satisfy the requirements for good user-perceived quality. A similar observation is made in
the bottom graph, where the Telnet echo delays are plotted. These graphs therefore show
that TCP applications are not affected by video traffic of limited bandwidth. However, as
the curves for 150Mbps and 125Mbps bottleneck speeds show, when the amount of video
traffic approaches the bottleneck link speed, TCP applications can be significantly affected.
This observation relates to previous studies, where the effect of uncontrolled UDP traffic
on the congestion sensitive TCP connections raises concerns of network congestion collapse.
This clearly shows that video streams have to either be subject to admission control, or
be separated from TCP connections in a different queue. In the remainder of this chapter,
we focus on the Web application, noting that both interactive applications perform well for
similar packet drop rates.

We now look at the performance of video streams when mixed with TCP. In Fig. 5.7,
we plot the CDF of video sequence quality. As expected, the high loss rate imposed by TCP
significantly degrades the quality obtained, and simply provisioning the sum of requirements
(180Mbps) is not sufficient. In fact, the bottleneck link has to be increased to 230Mbps before

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS

10

HTTP/1.0, All users, DT, Mixing TCP and Video

Compiementary COF of Page Download Times
3

0 5 10 15 20 25 30 35 40 a5
Page Downioad Time in Seconds
o Teinet, RTT 80msec, Mixing TCP and Video
10 ¥ ¥ 1] v L] L Ly
-3
)
-3
2
[*3
w
3
§ 10"
2
:
104 I 1 1 [)
o 0.1 02 03 04 05 06 07 08 09
Echo Delay in Seconds
Figure 5.6: Interactive TCP application performance, mixed with video traffic.

254

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 255

the video quality becomes acceptable. This represents a 50Mbps increase over the aggregate
bandwidth needed when TCP and video traffic were considered separately.

Video, Mixing TCP and Video

‘ T L] L} T

o
©0
T

4
[
T

e
~
L)

o
o
T

COF of Sequence Quality Metrics
o
1

0.4
0.3F
02+
0.1 : - :
L 2 L L L N 1 L J L
0 0.5 1 15 2 25 3 35 4 45 5

Sequence ITUS00 Quality Metric

Figure 5.7: Video quality, mixed with TCP traffic.

One would expect that the amount of excess bandwidth required when the two traffic
types are mixed in the same queue to be related to the amount of TCP traffic. In order to
further investigate this idea, we vary the TCP load in the network by varying the number
of TCP sources from 80 to 480, while keeping the number of video sources fixed at 20.
We repeat the process of assessing the bandwidth need of these sources, and determining
the aggregate bandwidth needed when TCP and video traffic are mixed. The results of this
experiment are shown in Fig. 5.8. In the top graph, we plot the amount of excess bandwidth
needed (beyond the sum of the requirements) as a function of the data traffic load. Note that
the range of data load offered varies from 20Mbps (80 sources) to 170Mbps (480 sources).

We observe that, indeed, the amount of excess bandwidth required increases with the offered

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 256

data load, in a seemingly linear relationship. However, as indicated by the ratio of the excess
bandwidth to the offered load shown in the bottom graph, the excess bandwidth required
is not directly proportional to the offered load over the range examined. For large data
loads, the ratio does seem to taper off at about 0.5, which represents a significant overhead.
This limited experiment suggests that the aggregation of many sources results in smoother
traffic, and therefore the bandwidth overhead needed to reduce the loss rate decreases. A
similar observation has been made based on measurements of Internet backbone traffic in
[92]. In our experiment, this observation is further supported by the results shown in Fig.
5.9, where we plot the video quality for the 170Mbps data traffic load. Note that the video
quality obtained when the bottleneck link speed is increased to 400Mbps. which practically
eliminates the central bottleneck in the topology, is lower than for a bottleneck of 380Mbps.
We explain this degradation by the fact that congestion is now occurring at the 100Mbps
links, which connect the 2"¢ level routers to the central routers. These links have lower
levels of aggregation, and therefore see larger loss rates. This means that the aggregate link
speed required in this case is larger than that required when there is only one bottleneck
in the network. For example, we find that in the original scenario, where a bottleneck link
speed of 230Mbps was sufficient, an aggregate of 280Mbps would actually be needed when
congestion occurs at the 2"¢ level routers.

To summarize, in this section, we have shown that mixing TCP and video traffic in the
same queue may result in performance degradation for both traffic types. On one hand,
an uncontrolled amount of video (UDP) traffic can significantly impact the performance
of interactive TCP applications. On the other hand, a large excess bandwidth is required
in order to bring the loss rates down to levels acceptable to video, compared to the sum
of the individual requirements. The latter would be sufficient if the two traffic types were
separated in different queues, and an appropriate share of the link was given to the video

queue. We consider traffic separation in more detail in the following section.

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 257

Excess Bandwith, Mixing TCP and Video

1m T L L L3 g L3
g
£
:
| =1
a
[}
3
g
w
0 1 1 L 1 L L L
20 40 60 80 100 120 140 160

Oftered TCP Load in Mbps

Ratio of Excess to Offered

20 40 60 80 100 120 140 160
Oftered TCP Load in Mbps

0 I L L

Figure 5.8: Amount of excess bandwidth required when mixing TCP and video traffic, as a
function of the load offered by the TCP sources.

5.4.3 Separating TCP and Video Traffic

In this section, we consider separating TCP and video traffic in different queues, served
with an appropriate scheduler, such as Weighted Round Robin (WRR) (see Fig. 5.10). We
show here that, by allocating appropriate bandwidth resources to the video queue through
appropriate weight settings (e.g., 120Mbps or more), it is possible to provide good video
quality with a bottleneck speed equal to the sum of requirements. In order to limit the
study space to a manageable size, we consider the following (TCP queue, Video queue)
weight settings: (10%, 90%), (30%, 70%), (50%,50%), (70%,30%), (90%,10%).

In the top graph of Fig. 5.11, we show the page download times for different bottleneck
link speeds. For each bottleneck speed, we show the curve corresponding to the smallest
weight setting of the TCP queue for which the Web downloads obtain good quality (note

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 258

Video, Mixing TCP and Video, 170Mbps TCP Load

R T 13 i ¥ T L)

COF of Sequence Quality Metrics
o o o ° ° ° o
(%) & (4] xR ~ [© -
T T) T 1 I L]
.

o
N
T

o
-
T

[+] 0.5 1 1.5 2 25 3 35 4 45 5
Sequence ITUS00 Quality Metric

Figure 5.9: Video quality for a data traffic load of 170Mbps.

that the x axis scale ranges from 0 to 10 sec). It is notable that for a bottleneck of 160Mbps
or more, the required TCP queue weight setting corresponds to a bandwidth smaller than the
TCP load. This indicates that, as the scheduler gives close to strict high priority service to
the video queue, the remaining bandwidth is sufficient for good interactive TCP application
performance. Now, for a bottleneck link of 160Mbps, the video queue weight needs to be
75% or larger for sufficient bandwidth to be allocated (i.e. 120Mbps). Looking at the bottom
graph, we find that, indeed, the curve corresponding to 90% of the 160Mbps link results
in good video quality. This means that, by separating TCP and video in two queues, it is
possible to provide good quality for both with a bottleneck link speed of 160Mbps, which
is smaller than the sum of the requirements (180Mbps). The reduction in the required
bandwidth can be explained by the effects of statistical multiplexing with large link speeds.
However, as shown by the curve corresponding to 70% of the 160Mbps link as well as when

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 259

gata 11 T] -

Figure 5.10: Separating TCP and video traffic in two queues, served by a WRR scheduler.

video — LTI T1] ~~ O
WRR

video traffic was alone in the network, if the bandwidth allocated to the video queue is smaller
than required, even by a small amount, the video quality can perceptibly suffer. Therefore,
the video queue weight setting has to be carefully selected, and should be in relation to the
amount of video traffic admitted in the network. In addition, when the bottleneck link speed
is decreased (e.g. 150Mbps), the portion allocated to TCP traffic needs to be large enough
to obtain good interactive application performance. Thus, the TCP queue weight should be
50% or larger for a 150Mbps bottleneck. Clearly, the video quality would be unacceptable
in this case.

To summarize, in this section we show that by separating TCP and video traffic in
different queues, it is possible to achieve good quality for both, with a bottleneck link that
is smaller than the sum of their individual requirements. However, there is little margin
for error in allocating bandwidth to the video queue. In the following section, we examine
the benefits made possible by the use of service differentiation in the form of multiple drop

priorities, along with appropriate layering of the video and marking of the TCP traffic.

5.5 Priority Drop Queues

In this section, we consider the use of priority drop queues, which differentiate between three
packet priorities: HIGH, MED and LOW. In the first section, we consider mixing TCP and
video traffic in one such queue, then we consider separating them in different queues in the

second section.

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS

HTTP/1.0, All users, Separate Queues
10

Complementary COF of Page Download Times
=]
L]

" 10% of 160Mbps

104 1 —t L 1 L L 1 1 L
0 1 2 3 4 5 8 7 8 9 10
Page Downioad Time in Seconds
Video, Separate Queues
1] LN L L] ¥ L} ¥ LS L)
0.9 J
0.8 -
§ 0.7} <
Zos6l .
3
o
Sost -
2
oaf |
Q
[F
a
Ooa3t .
0.2 . . i
70% of 160Mbps 90% of J60Mbps
o1k . . 70% of p75Mbps |
1 L L 1 i L) S L 1
a 0.5 1 15 2 25 3 35 4 45 S
Sequence ITUS00 Quality Metric

Figure 5.11: Separating TCP and video traffic.

260

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 261

5.5.1 Mixing TCP and Video Traffic

In this section, we consider that video traffic is layered as described in Section 5.3. We map
the three video layers directly to the three drop priorities in the network. The question we
would like to answer here is whether layering enables the video to sustain the large drop
rates resulting from TCP's behavior. We first consider that TCP traffic is marked according
to the TCP-based scheme introduced in the previous chapter. In Fig. 5.12, we show the
video quality in this case. Two sets of curves are shown, corresponding to two different
drop schemes, namely random early drop (dashed lines) and simple threshold drop based
on instantaneous queue occupancy. The benefits of layering are clearly apparent, with good
video quality even for a 150Mbps bottleneck link speed. Furthermore, the video quality
degrades gracefully as the bottleneck link speed is decreased, supporting the claims made
in [132|. Comparing the two sets of curves, we conclude that the use of early drop is not
adequate for video. The degradation due to early drop is particularly apparent for lower
link speeds, where it results in larger drop rates for MED priority packets.

As previously indicated, the results above were obtained for TCP traffic marked accord-
ing to the TCP-state based marking scheme discussed in the previous chapter. We now
consider the question of how to map TCP traffic to the three drop priorities in more de-
tail. We compare the TCP-state based marking to marking all TCP traffic with one of
the three priorities, and to application-based marking. First, as would be expected, we
find that mapping all TCP traffic to the LOW priority results in good video quality at the
expense of poor TCP application performance (results not shown). In particular, the Web
download quality is barely acceptable at a bottleneck of 180Mbps, and clearly unacceptable
at 160Mbps or below. At the other extreme, marking all TCP traffic with HIGH priority
results in poor video quality, even at a bottleneck of 180Mbps. Thus, the only single prior-
ity mapping which provides a reasonable compromise between the performance of TCP and

video is marking all TCP traffic with the MED priority. We compare the video quality and

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 262

Layered Video, Random vs Hard Drop, Mixing TCP and Video

COF ot Sequence Quality Metrics
o o o o o od o
(2] [(4] [~ [] (-] -
| L] L ¥ L v)
4

o
N
T

©
-
Y

Sequence ITU5S00 Quality Metric

Figure 5.12: Video quality with layering, comparing random early drop (dashed lines) and
regular threshold-based drop (solid lines).

Web performance for this mapping to the TCP-state based marking in Fig. 5.13. As can be
seen in the graphs, by allowing TCP applications to use the HIGH priority, the TCP-state
based scheme provides superior performance when the bottleneck link is such that MED
drop rates are large (e.g, 125Mbps and below). Thus, for the TCP-state based marking,
the Web quality is excellent even for a bottleneck link of 100Mbps. In addition, the video
quality benefits from decreased drop rates for the MED priority packets, resulting from the
regulated use of such markings. Thus, the video quality for bottleneck links below 150Mbps
is better for the TCP-state based scheme, as long as the aggregate HIGH priority traffic
in the network is not close to the bottleneck link speed. At that point, the reduced MED
priority usage is out-weighted by the effect of the additional HIGH priority traffic that this

scheme introduces.

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 263

HTTP/1.0, Al users, TCP-DS vs TCP-MED, Mixing TCP and Video

10

(-] \\
2 \
= \
3 \
o \
§ N
AY
2 T N
A N TCP-MED
: . Y ~ < _100Mbps
310 . R e .‘\A;: . i
e TCP-MED, -
(& 150Mbps \ S
> AN . : g
s ~ A N
€ S =~ v \TCP-MED- - -)
g TCP-MED 1125Mbps .
'é 180Mop v\ N
PN \
S : “ \ | A

100 Yy \ \
\‘ ~ AN
) N o \
} \ \
? \ N
10'3 L 3 L A 1 1 S
)] 5 10 15 20 25
Page Download Time in Seconds
Layered Video, TCP-DS vs TCP-MED, Mixing TCP and Video
1 T T T T T
[¢X:] o -
08f .
g 07 <
Zo6f 4
3
(¢]
Sosf -
]
[<]
1’9
8
03 TCP- il
180Mbps
150Mbps
o02r 125Mbps ’
100Mbps
0.1}¢+ -
1 L 1]
1] 0.5 1 1.5 2 25 1
Sequence ITUS00 Quality Metric

Figure 5.13: Web performance and video quality, comparing the TCP-state based scheme
(TCP-DS, solid lines), and mapping all TCP traffic to the MED priority (TCP-MED, dashed
lines) .

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 264

Finally, we compare the performance obtained using TCP-state marking to that using
application-based marking, whereby Telnet traffic is marked as HIGH priority, Web traffic
as MED priority, and FTP traffic as LOW priority. We find that both schemes result in
comparable quality for video, Telnet and Web, for which the results are not shown. However,
the two schemes differ significantly when it comes to FTP’s performance. As expected,
marking all FTP traffic as LOW priority results in large transfer times when the bottleneck
link speed is decreased below 180Mbps, as shown in Fig. 5.14. In fact, for link speeds below
125Mbps, the FTP application is all but shut down in this case.

FTPs, TCP-DS vs APPL, Mixing TCP and Video
‘o L] L]

N T | S g - = - T T T ~v
Xx
x
*
g Tx
= “x
$.
3 faN
a x
L—é AY
x
‘é 10°' v p
N
[=4
g TCP-DS \\
% 125Mbps X
§ 100Mbps \
APPL b
\ 150Mbps
] / 125Mbps
\
10 5 T 2 2
10 10 10°

File Transfer Time in Seconds

Figure 5.14: FTP transfer times, comparing TCP-state based marking (TCP-DS, solid lines)
and application-based marking (APPL, dashed lines).

In summary, the results in this section show that using queues with multiple drop pri-
orities along with appropriate layering of video and marking of TCP traffic, it is possible to

mix the two in the same queue. Furthermore, bandwidth savings are possible compared to

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 265

the individual bandwidth requirements, as well as to separating the two in regular tail drop
queues. However, we note that these improvements are obtained only when the amount
of HIGH priority traffic generated by all applications is limited, and corresponds to the
available bandwidth resources in the network.

In the following section, we examine the benefits of separating the two traffic types in

different queues with multiple drop priorities.

5.5.2 Separating TCP and Video Traffic

We consider in this section that TCP and video traffic are separated in two queues, which
implement prioritized dropping. In the scenarios below, video is layered and TCP application
traffic is marked according to the TCP-state based scheme. We illustrate here the additional
benefits of separation compared to mixing, which result from the decoupling of the loss rates
for the different drop priorities incurred by the two traffic types. In particular, the control
on packet loss which is provided by the scheduler makes it possible to calibrate the video
queue bandwidth in order to achieve a desired quality level.

In the top graph of Fig. 5.15, we show the video quality for a number of video queue
weight settings and bottleneck link speeds. We find that, with a bottleneck link speed of
125Mbps, and a 90% weight setting, the obtained video quality is good. In the bottom
graph, we plot the Web download times for the same set of bottleneck link speeds and
queue settings (shown here in terms of the TCP queue weight). For the (10% of 125Mbps)
setting, we find that Web performance is good as well. Therefore, with separation and
priority dropping, a bottleneck link of 125Mbps is sufficient to support our traffic, providing
further bandwidth savings compared to mixing in one priority queue. In fact, comparing
these results to the case where each traffic type is alone in the network, we find that the
required bandwidth is exactly the same. Indeed, in the top graph of Fig. 5.16, we find that
the bandwidth required when video is layered to be 105Mbps, while in the bottom graph,
we find that the bandwidth required when TCP traffic is marked is 20Mbps, for a total of

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 266

Layered Video, Separate Queuves

¥] L L]

o o o o
o ~ (] ()
Y T T T

COF of Sequence Quality Metrics
2 % &
1 1
-3

100Mbps
\l
03 p .
'
B %0%ot ! J
0.2 100Mbps ,I
01} 7\ .
7
rd
L 1 I} L L pa 1
[} 05 1 15 2 25 3 5
Sequence ITUS00 Quality Metric
o HTTP/1.0, TCP-state Based Marking, Separate Queues
10 'i 1] L) ¥ L] L] L LN T T
B RN
Y v
vy ¥
8 * 0
N T
§ 1v 0 10%d
g t " L. 125Mbps
t
1
g : ‘/10%00
§ \ 100Mbps
\
§ {. t
a \
s10 | 1
b kY
uw
=] ' \
i
s ' h
g C b g 30%ot
g 1 1. 100Mbps
)
§ il
© Pl a0kt
L | 12smops
1
| |/
-/|)
Y
10-1 1 L IS L 1 1 1 ! 1
0 Y 10 15 2 25 0 35 40 45 50
Page Downioad Time in Seconds

Figure 5.15: Video quality and Web performance for separate queues with priority dropping,
for a 100Mbps (dashed lines) and 125Mbps (solid lines) bottleneck.

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 267

--
-
f
-

o
©o
T

o
@®
T

o
LN}
L]

o
(-]
Y

COF of Sequence Quality Metrics
o
»
1

04 -
0.3+ -
02 B
0.1 4
L] L L 3 L
0 0.5 1 15 2 25 3 5
Sequence ITUS00 Qualiity Metric
o HTTP/1.0, TCP-DS, TCP Alone
10 T Ll 13 . L LS L
g
=
3
&
s 10 b
['%
o]
(3]
[~
i
g
‘0 |3 1 L 1 L)1
20 25 0 35 40 45 50
Page Download Time in Seconds

Figure 5.16: Layered video quality and TCP-state based marked Web performance, when
each traffic type is alone in the network.

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 268

125Mbps. Notice that no statistical multiplexing gain is achieved with mixing, since these
numbers correspond to the minimum possible for good quality.

These results illustrate the fact that by separating the two traffic types, it is possible to
precisely control the loss rate seen by each, and thus efficiently meet their requirements. In
addition, the issue of appropriate mapping of the different applications’ traffic to the drop
priorities is simplified, since the two traffic types are isolated from each other. These benefits
were illustrated here through examining a range of scheduler settings. In practice, the process
would be made easier if an intelligent scheduler were used, which would automatically provide
control on the loss rates seen by the different drop priorities in each queue. The design of

such as scheduler remains a subject of future work.

5.6 Summary

In this chapter, we looked at the problem of supporting TCP and UDP applications in the
Internet. We considered a future Internet where TCP traffic shares the network with large
amounts of UDP traffic, which in this study, is in the form of MPEG-2 video streams.

We have assessed the bandwidth requirements of each traffic type separately, and shown
that additional bandwidth is required for good quality when they are mixed together. Indeed,
when the two traffic types are mixed in the same queues, the large loss rate due to TCP’s
behavior results in poor video quality. Conversely, we show that uncontrolled UDP traffic
can significantly degrade TCP applications’ perceived performance. By separating the two
traffic types in different queues, it is possible to obtain the right quality for each, as well as
benefit from the effects of statistical multiplexing.

We then consider the use of queues with multiple drop priorities, with appropriate video
layering and TCP marking. We find that such mechanisms allow the two traffic types to
be mixed in the same queue, and get good user-perceived quality at significant bandwidth

savings compared to the individual requirements. Finally, we consider the separation of the

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 269

TCP and video traffic in different queues, which implement prioritized drop. We show how
the additional control on the packet drop rates incurred by each of the traffic types allows

the most efficient support of the two traffic types.

CHAPTER 5. INTEGRATED SUPPORT OF TCP AND UDP APPLICATIONS 270

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this dissertation, we studied the performance of TCP applications in different network
environments, identified problems attributed to TCP’s reaction to packet loss, and proposed
network-assisted mechanisms for addressing them.

In Chapter 3, we considered the switched, full-duplex LAN environment, where TCP’s
burstiness and the bottlenecks created by the large link speed mismatches were shown to
cause packet loss, and result in unexpectedly low throughput. In particular, severe perfor-
mance degradation has been shown for short transfers, due to the use of a large timeout
value. In addition, we showed that connections which have different degrees of burstiness
get widely different shares of a bottleneck link. In particular, sources connected to higher
speed links get an unacceptably small share of the bandwidth. To address these problems,
and to bypass TCP’s costly timeout-based recovery, we considered the use of a hop-by-hop
MAC layer flow control mechanism. Flow control allows the network to operate without
loss, while keeping the network queue sizes short, in contrast to increasing buffer sizes in
the switches. This advantage is crucial for time-sensitive applications, which require small

queuing delays. In addition, a flow control scheme allows explicit control on the share of the

271

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 272

bandwidth received by different incoming links. Finally, using smaller buffers allows cheaper
switches to be manufactured and installed. However, we stress the fact that the flow control
scheme must be selective in its actions, otherwise it could cause congestion to propagate in
the network. Thus, we propose enhancements to the IEEE802.3x standard for flow control
in Ethernet networks, whereby MAC address and Class of Service information is included
in the flow control notification frames. We show that the use of this additional information
addresses the limitation of the non-selective scheme.

In Chapter 4, we study the performance of popular TCP applications in the context of
the Internet. In this context, a flow control scheme, such as the one considered in Chapter 3,
may not be a practical end-to-end solution, due to the various technical and administrative
boundaries that exist in the Internet. Therefore, during congestion episodes, packet loss
may be inevitable on bottleneck links. Using simulations of a large network with realistic
link speeds and application traffic (Telnet, Web and FTP), we showed that interactive
TCP applications can be significantly hurt during congestion. Indeed, large delays are
introduced in the transaction times by the reaction of TCP’s congestion control mechanisms
to packet loss. To address these effects, we investigated the use of service differentiation
mechanisms to shield the interactive application traffic from the packet loss. We studied two
different approaches to the use of multiple drop priorities within one queue, as specified in the
Assured Forwarding Service of the DiffServ architecture. We first considered differentiation
traffic based on the application type, and showed that by prioritizing Telnet over Web and
FTP, we can prevent the loss of Telnet packets. This eliminates large delays caused by
retransmit timeouts, which are necessary to recover lost packets, but affect the interactivity
of teletyping. Furthermore, by reducing the loss seen by Web downloads, the page download
times were brought down from tens of seconds to less than 5 seconds, which is the limit for
good perceived quality. However, these improvements were shown to come at the expense
of FTP traffic, especially for low bottleneck link speeds. This motivated an approach which

marks packets based on TCP connection state, and allows all applications to get a share of

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 273

high priority traffic. This scheme was shown to provide the same performance improvements
to interactive applications, with a moderate impact on non-interactive ones.

In Chapter 4, we limited ourselves to a network carrying TCP traffic exclusively, simi-
larly to the current Internet. In Chapter 5. we consider the future role of the Internet as a
ubiquitous communication network, carrying TCP as well as multimedia traffic using UDP.
In particular, we investigated the issues associated with the support of video and TCP appli-
cations in the same network. The bandwidth required for good quality when the two traffic
types are mixed together was found to be significantly larger than the sum of individual
requirements. The additional bandwidth was needed in order to bring the packet loss rate
due to TCP’s behavior down to levels acceptable to video. Conversely, uncontrolled amounts
of UDP traffic which approach the available bottleneck were shown to significantly degrade
the performance for TCP applications. This indicated the need for video to be subject to
admission control or for separation of the two traffic types. By separating the two traffic
types in different queues, it was shown to be possible to obtain the right quality for each
application, with a bandwidth that is smaller than the sum of the individual requirements,
a benefit of statistical multiplexing. We then investigated the use of queues with multiple
drop priorities, along with appropriate video layering and TCP marking. Such mechanisms
were shown to allow efficient support of the two traffic types in one queue, with a signifi-
cant reduction in the bandwidth needed compared to the individual requirements. Finally,
we considered separating TCP and video traffic in different queues, which implement drop
priorities and are served with a weighted round robin scheduler. The additional control
provided by the scheduler on the packet drop rates incurred by each of the traffic types was

shown to allow even further bandwidth savings to be obtained.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 274

6.2 Suggestions for Future Work

The implementation of switches which provide selective forwarding of frames based on des-
tination MAC address as proposed in Chapter 3, may be challenging. Indeed, this scheme
requires buffer management which is significantly more complex than first in first out (FIFO).
The design of a scalable buffer management scheme which would selectively block frames is
an interesting and challenging problem, and deserves further work. An alternative approach
is the early forwarding of selective flow control messages, which would be sent towards the
sources of traffic soon after being received by a switch. This approach results in a more
scalable mechanism than one requiring buffering in intermediate switches, which is particu-
larly important for large switches. However, the additional overhead in control messages, as
well as the design of the scheme’s details and the setting of its different parameters require
further investigation.

The setting of the two thresholds for the TCP-state based marking algorithm described
in Chapter 4 was the subject of a limited study. While we studied the effect of the marking
thresholds on the different TCP applications’ performance, we mainly used statically selected
values. More work is needed to investigate means for automatically setting the thresholds
to guarantee a certain download time (e.g., based on the RTT), or for dynamically varying
them (e.g., in order to achieve a target throughput). In addition, more work is needed
to assess the combined usage of marking and scheduling in order to differentiated between
different connections or users. Furthermore, we have used a complex scheduler design, which
differentiates between application classes, preserves the ordering of packets and provides
strict control on the share of high priority traffic for each connection. It would be interesting
to study the performance obtained using the simpler scheduler designs presented in Chapter
4. In particular, it is important to assess the effects of potential re-ordering at the source on
user-perceived performance. Finally, this study relied on large and time consuming computer

simulations. With the increased sophistication of TCP models, it might be rewarding to

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 275

validate these, and to explore their use for similar studies.

In Chapter 5, we considered a weighted round robin scheduler to service the TCP and
UDP queues. The results obtained indicate that the application performance for queues with
multiple drop priorities would benefit from a scheduler which takes into account the drop
rate incurred by the different drop priorities in the two queues. For example, it should be
possible for a network manager to specify an order of importance among the different drop
priorities, e.g. place a higher drop rate for TCP medium priority packets than for UDP ones.
Such a scheduler would greatly simplify the problem of provisioning forwarding resources to
the queues, by automatically adjusting the service rate of each to satisfy target drop rules.
On another level, this study would be more complete if different video compression schemes
are considered, in addition to MPEG-2. It is expected, however, that the conclusions we
make would not be affected. Finally, we did not consider the end-to-end delay requirement,
which is critical for some UDP applications. Satisfying this requirement may require further

separation between the different applications’ traffic, and warrants further work in this area.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 276

Bibliography

{1} Network Simulator, ns version 2.1, available at http://www.isi.edu/nsnam/ns/

[2] Aggarwal A., Savage S., Anderson T., Understanding the Performance of TCP Pacing,
in Proceedings of [IEEE INFOCOM, March 2000.

(3] Ahn J., Danzig P., Liu Z., Yan L., Evaluation of TCP Vegas, Emulation and Ezperi-

ment, in [EEE Transactions on Communications, 25(1), October 1995.

[4] Allman M., Kruse H., Osterman S., An Application-Level Solution to TCP’s Satellite
Inefficiencies, in Proceedings of the 1st WOSBIS, November 1996.

[5] Allman M., Hayes C., Kruse H., Osterman S., TCP Performance over Satellite Links,
in Proceedings of the 5th ICTS, March 1997.

[6] Allman M., An Evaluation of TCP with Larger Initial Windows, in ACM Computer

Communications Review, July 1998.

[7] Allman M., Floyd S., Partridge C., Increasing TCP’s Initial Window, RFC2414,
September 1998.

[8] Allman M., On the Generation and Use of TCP Acknowledgements, in ACM Computer

Communications Review, October 1998.

[9] Allman M., Paxson V., Stevens W., TCP Congestion Control, RFC2581, April 1999.

277

BIBLIOGRAPHY 278

[10] Allman M., Glover D., Sanchez L., Enhancing TCP Over Satellite Channels Using
Standard Mechanisms, RFC2488, January 1999.

[11] Allman M., TCP Byte Counting Refinements, in ACM Computer Communications
Review, July 1999.

(12] Allman M., Paxson V., On Estimating End-to-End Network Path Properties, in Pro-
ceedings of SIGCOMM'99, August 1999.

[13] Allman M., Falk A., On the Effective Evaluation of TCP, in ACM Computer Com-

munication Review, October 1999.

(14] Allman M., et al., Ongoing TCP Research Related to Satellites, RFC2760, February
2000.

[15] Allman M., Balakrishnan H., Floyd S., Enhancing TCP's Loss Recovery Using Early
Duplicate Acknowledgment Response, Internet Draft, June 2000.

(16] Allman M., TCP Congestion Control with Appropriate Byte Counting, Internet Draft,
July 2000.

[17] Allman M., A Web Server’s View of the Transport Layer, in ACM Computer Commu-

nication Review, October 2000.

(18] Allman M., A Conservative SACK-based Loss Recovery Algorithm for TCP, Internet
Draft, December 2000.

[19] Allman M., Balakrishnan H., Floyd S., Enhancing TCP’s Loss Recovery Using Limited
Retransmit, Internet Draft, RFC3042, Janurary 2001.

[20] Almeida V., Bestavros A., Crovella M., de Oliveira A., Characterizing Reference Lo-
cality in the WWW, in Proceedings of IEEE PDIS’96, December 1996.

BIBLIOGRAPHY 279

[21] Almeida J., et al., Providing Differentiated Levels of Service in Web Content Hosting,
in Proceedings of First Workshop on Internet Server Performance, June 1998

[22] Aravind R., et al., Packet Loss Resilience of MPEG-2 Scalable Video Coding Algo-
rithms, in IEEE Transactions on CSVT, October 1996.

[23] ATM Forum, The History of ATM, http://www.atmforum.com/.

[24] Balakrishnan H., Padmanabhan V. N., Katz R. H., The effects of Asymmetry on TCP
Performance, in Proceedings of ACM/IEEE MobiCom, September 1997.

[25] Balakrishnan H., Padmanabhan V. N., Seshan S., Katz R. H., A Comparison of Mech-
anisms for Improving TCP Performance over Wireless Links, in IEEE/ACM Trans-

actions on Networking, December 1997.

[26] Balakrishnan H. et al., TCP Behavior of a Busy Internet Server: Analysis and Im-
provements, in Proceedings of IEEE INFOCOM, March 1998.

[27] Barakat C., Altman E., Dabbous W., On TCP Performance in a Heterogeneous Net-
work: A Survey, in Proceedings of IEEE Globecom, December 1999.

(28] Baran P., On Distributed Comunications: Summary Overview, Rand Corporation
Memo RM-3767-PR, August 1964.

[29] Barford P., Crovella M., Generating Representative Web Workloads for Network and
Server Performance Evaluation, in Proceedings of ACM SIGMETRICS, June 1998.

[30] Barford P., Crovella M., Critical Path Analysis of TCP Transactions, in IEEE Trans-

actions on Networking, Volume 9, Number 3, June 2001.

[31] Barford P., Crovella M., A Performance Evaluation of Hyper-Tezt Transfer Protocols,
in Proceedings of the 1999 ACM SIGMETRICS, May 1999.

BIBLIOGRAPHY 280

[32] Basso A., Dalgic I., Tobagi F., van den Branden Lambrecht C., A Feedback Control
Scheme for Low Latency Constant Quality MPEG-2 Video Encoding, in Proceedings of
EOS/SPIE Digital Compression Technologies and Systems for Video Communications,
October 1996.

[33] Berners-Lee T, Connolly D., Hypertert Markup Language - 2.0, RFC1866, November
1995.

[34] Berners-Lee T, Fielding R., Frystyk H., Hypertezt Transfer Protocol- HTTP/1.0,
RFC1945, May 1996.

[35] Bernet Y. et al., A Framework for Integrated Services Operations over DiffServ Net-
works, RFC2998, November 2000.

[36] Bhatti N., Bouch A., Kuchinsky A.J., Integrating User-Perceived Quality into Web
Server Design, in Proceedings of WWW’00, Amsterdam, May 2000.

[37] BlakeS., et al., An Architecture for Differentiated Services, RFC2475, December 1998.

[38] Bolliger J., Hengartner U., Gross Th., The Effectiveness of End-to-End Congestion
Control Mechanisms, in ETH Technical Report 313, 1999.

[39] Bolot J-C., Turletti T., Ezperience with Control Mechanisms for Packet Video in the

Internet, in Computer Communication Review 28, January 1998.

[40] Bouch A., Sasse M., DeMeer H. G., Of Packets and People: A User-Centered Approach
to Quality of Service, in Proceedings of [WQo0S’00, June 2000.

[41] Bovet D., Cesati M., Understanding the Linuz Kernel, O'Reilly Press, October 2000.

[42] Braden R., Requirements for Internet Hosts - Communications Layers, RFC1122, Oc-
tober 1989.

BIBLIOGRAPHY 281

[43] Braden R. et al., Recommendations on Queue Management and Congestion Avoidance

in the Internet, RFC2309, April 1998.

[44] Brakmo L., Peterson L., Performance Problems in BSD4.4 TCP, in ACM Computer

Communication Review, October 1995.

[45] Brakmo L., Peterson L., TCP Vegas: End to End Congestion Avoidance on a Global
Internet, in IEEE Journal on Selected Areas in Communications, Volume 13, Number

8, October 1995.

[46] Brandy P., A Technique for Investigating ON/OFF Patterns of Speech, in Bell Labs
Technical journal, 44(1), January 1965.

[47] Caceres R., Danzig P., Jamin S., Mitzel D., Characteristics of Wide-Area TCP Con-

versations, in Proceedings of ACM Sigcomm, September 1991.

[48] Cardwell N., Savage S., Anderson T., Modeling the Performance of Short TCP Connec-
tions, see "Modeling TCP Latency"” in Proceedings of the [EEE INFOCOM, October
1998.

[49] Cardwell N., Savage S., Anderson T., Modeling TCP Latency, in Proceedings of IEEE
INFOCOM, June 2000.

[50] Casetti C., Meo M., A New Approach to Model the Stationary Behavior of TCP Con-
nections, in Proceedings of IEEE INFOCOM, June 2000.

[31] Cerf V., Kahn R., A Protocol for Packet Network Intercommunication, in IEEE Trans-

actions on Communications, May 1974.

[52] Charzinski J., Problems of Elastic Traffic Admission Control in an HTTP Scenario, in
Proceedings of IWQoS'01, June 2001.

BIBLIOGRAPHY 282

[53] Chiu D., Jain R., Analysis of the Increase/Decrease Algorithms for Congestion Avoid-
ance in Computer Networks, in Journal of Computer Networks and ISDN, Volume 17,
Number 1, June 1989.

[54] Christiansen M., Jeffay K., Ott D., Smith F. D., Tuning RED for Web Traffic, in
Proceedings of SIGCOMM, August 2000.

[55] Civanlar M., Cash G., Haskell B., ATYT’s Error Resilient Video Transmission Tech-
nique, RFC2448, November 1998.

[56] Clark D., Window and Acknowledgement Strategy in TCP, RFC813, July 1982.

[57] Clark D., The Design Philosophy of the DARPA Internet Protocols, in Proceedings of
ACM SIGCOMM'88, August 1988.

{58] Clark D., Fang W., Ezplicit Allocation of Best Effort Packet Delivery Service, in IEEE

Transactions on Networking, 6(4), 1998.

[39] Crovella M., Bestavros A., Self-Similarity in World Wide Web Traffic: Ewnidence and
Possible Causes, in [EEE/ACM Transactions on Networking, December 1997.

[60] Crovella M., Frangioso R., Harchol-Balter M., Connection Scheduling in Web Servers,

in Usenix Symposium on Internet Technologies and Systems, October 1999.

[61] Cunha C., Bestavros A., Crovella M., Characteristics of WWW Client-Based Traces,
BU Technical Report BU-CS-95-010, July 1995.

[62] Dalgic ., Tobagi F., Constant Quality Video Encoding, in Proceedings of ICC, Seattle,
June 1995.

[63] Druschel P., Banga G., Lazy Receiver Processing (LRP): A Network Receiver Sub-
system Architecture for Server Systems, in Proceedings of USENIX OSDI, October
1996.

BIBLIOGRAPHY 283

[64] Elloumi O., De Cnodder S., Pauwels K., Usefulness of Three Drop Precedences in
Assured Forwarding Service, Internet Draft (expired), July 1999.

[65] Eggert L., Heidemann J., Application-Level Differentiated Services for Web Servers,
in World Wide Web Journal, Volume 2, Number 3, August 1999.

[66] Fall K., Floyd S., Simulation-based Comparisons of Tahoe, Reno and SACK TCP, in
ACM Computer Communication Review, July 1996.

[67] Fang W., Peterson L., TCP Mechanisms for DIFFSERV Architecture, Princeton Uni-
versity Technical Report 605-99, July 1999.

[68] Fang W., Seddigh N., Nandy B., A Time Sliding Window Three Colour Marker
(TSWTCM), Internet Draft, March 2000.

[69] Feldmann A. et al., Dynamics of [P Traffic: A Study of the Role of Variability and
the Impact of Control, in Proceedings of SIGCOMM'99, August 1999.

[70] Feamster N., Balakrishnan H., Packet Loss Recovery for Streaming Video, in Proceed-
ings of 12th International Packet Video Workshop, April 2002.

[71] Feng W., Kandlur D., Saha D, Shin K., Adaptive Packet Marking for Providing Dif-
[erentiated Services in the Internet, in Proceedings of [CNP '98, October 1998.

[72] Feng W., Kandlur D., Saha D, Shin K., A Self-Configuring RED Gateway, in Pro-
ceedings of INFOCOM'99, March 1999.

[73] Feng W., Kandlur D., Saha D, Shin K., BLUE: A New Class of Active Queue Man-
agement Algorithms, U. Michigan CSE-TR-387-99, April 1999.

[74] Fielding R., et al., Hypertext Transfer Protocol - HTTP/1.1, RFC2616, June 1999.

[75] Floyd S., Jacobson V., On Traffic Phase Effects in Packet-Switched Gateways, in
Computer Communication Review V. 21, N. 2, April 1991.

BIBLIOGRAPHY 284

[76] Floyd S., Jacobson V., On Traffic Phase Effects in Packet-Switched Gateways, in Inter-
networking: Research and Experience, Volume 3, Number 3, pages 115-156, September
1992.

[77] Floyd S., Connections with Multiple Congested Gateways in Packet Switched Networks,
Part 1: One-way Traffic, in ACM Computer Communication Review, Volume 21,
Number 3, October 1991.

[78] Floyd S., Jacobson V., Random Early Detection Gateways for Congestion Avoidance,
in IEEE/ACM Transactions on Networking, Volume 1, Number 4, August 1993.

[79] Floyd S., TCP and Ezplicit Congestion Notification, in ACM Computer Communica-

tion Review, Volume 24, Number 3, October 1994.

[80] Floyd S., TCP and Successive Fast Retransmits,
http://www.aciri.org/floyd/abstracts.htmi#F95a, May 1995.

[81] Floyd S., Jacobson V., Link Sharing and Resource Management Models for Packet
Networks, in IEEE/ACM Transactions on Networking, Volume 3, Number 4, August
1995.

[82] Floyd S., Fall K., Router Mechanisms to Support End-to-End Congestion Control, un-
published manuscript, http://www-nrg.ee.lbl.gov/floyd/papers.html, February 1997.

(83] Floyd S., Discussion of Setting Parameters, Email

http://www.icir.org/floyd/REDparameters.txt, November 1997.

[84] Floyd S., Fall K., Promoting the Use of End-to-End Congestion Control in the Internet,
in IEEE/ACM Transactions on Networking, May 1999.

[85] Floyd S., Henderson T., The NewReno Modification to TCP Fast Recovery, RFC2582,
April 1999.

BIBLIOGRAPHY 285

[86] Floyd S., Recommendation on the Use of the gentle_ Variant of RED,
http://www.aciri.org/floyd/red/gentle.html, March 2000.

[87] Floyd S., Handley M., Padhye J., Widmer J., Equation-Based Congestion Control for
Unicast Applications, in Proceedings of SIGCOMM’'00, August 2000.

[88] Floyd S., Congestion Control Principles, RFC2914, September 2000.

(89] Floyd S., A Report on Some Recent Developments in TCP Congestion Control, in
[EEE Communications Magazine, April 2001.

[90] Freed N., Borenstein N., Multipurpose Internet Mail Extentions Parts 1-5, RFC2045-
RFC2049, November 1996.

[91] Frystyk H., et al., Network Performance Effects of HTTP/1.1, CSS! and PNG, in
Proceedings of ACM SIGCOMM'97, August 1997.

[92] Fraleigh C., et al., Packet-Level Traffic Measurements from a Tier-1 IP Backbone, in
Proceedings of PAM, April 2001.

[93] Gringeri S., et al., Robust Compression and Transmission of MPEG-4 Video, in Pro-
ceedings of ACM International Multimedia Conference, November 1999.

[94] Girod B., Firber N., Feedback-based Error Control for Mobile Video Transmission, in
Proceedings of the IEEE Special Issue on Video for Mobile Multimedia, October 1999.

[95] Girod B., Farber N., Steinbach E., Error-Resilient Coding for H.263, in Insights into

Mobile Multimedia Communications, Academic Press, 1999.

[96] Goyal M., Padmini M., Jain R., Effect of Number of Drop Precedences in Assured
Forwarding, in Proceedings of IEEE GLOBECOM, December 1999.

[97] Goyal M., Durresi A., Jain R., Liu C., Performance Analysis of Assured Forwarding,
Internet Draft, February 2000.

BIBLIOGRAPHY 286

[98] Gurtov A., TCP Performance in the Presence of Congestion and Corruption Losses,
Master’s Thesis, University of Helsinki, December 2000.

[99] Handley M., et al., Session Initiation Protocol, RFC2543, March 1999.

[100] Handiey M., Padhye J., Floyd S., TCP Congestion Window Validation, RFC2861,
June 2000.

[101] Heidemann J., Performance Interactions Between P-HTTP and TCP Implementa-

tions, in ACM Computer Communication Review, April 1997.

[102] Heidemann J., Obraczka K., Touch J., Modeling the Performance of HTTP Over
Several Transport Protocols, in [EEE/ACM Transactions on Networking, October

1997.
[103] Heinanen J., et al, Assured Forwarding PHB Group, RFC2597, June 1999.

[104] Henderson T. R., Sahouria E., McCanne S., Katz R. H., On Improving the Fairness
of TCP Congestion Avoidance, in Proceedings of IEEE Globecom, November 1998.

[105] Hengartner U., Bolliger J., Gross Th., TCP Vegas Reuisited, in Proceedings of Info-
com’2000.

[106] Hoe J., Improving the Start-Up behavior of a Congestion scheme jor TCP, in SIG-
COMM Symposium on Communications, Architectures and Protocols, August 1996.

{107] Horn U., Stuhlmiiller K., Link M., Girod B., Robust Internet Video Transmission
Based on Scalable Coding and Unequal Error Protection, Image Communication, Vol-
ume 15, Number 1-2, Sept. 1999.

[108| Ibanez J., Nichols K., Preliminary Simulation Evaluation of an Assured Service, In-
ternet Draft (expired), August 1998.

[109] IBM Storage Systems Group, Private Communication, March 2002.

BIBLIOGRAPHY 287

[110] IEEE 802.1p, Traffic Class Ezpediting and Dynamic Multicast Filtering, in [EEE Stan-
dard 802.1D, 1998 Edition.

[111] IEEE 802.3x, Specification for 802.3 Full Duplez Operation, in IEEE Standard 802.3,
1998 Edition.

[112] IEEE 802.3z, Media Access Control Parameters, Physical Layers, Repeater and Man-
agement Parameters for 1,000 Mb/s Operation, in IEEE Standard 802.3, 1998 Edition.

[113] IEEE Std 802.3ac-1998, Frame Eztensions for Virtual Bridged Local Area Network
(VLAN) Tagging on 802.3 Networks.

[114] ITU Recommendation G.711, Pulse Code Modulation of Voice Frequencies, November
1988.

[115] ITU Recommendation G.726, 40, 32, 24, 16 Kbit/sec Adaptive Differential Pulse Code
Modulation, December 1990.

[116] ITU Recommendation G.723.1, Speech Coders: Dual Rate Speech Coder for Multimedia
Communications Transmitting at 5.3 and 6.3 Kbit/sec, March 1996.

[117] ITU-T Recommendation G.107, The Emodel: A Computational Model for Use in

Transmission Planning, December 1998.

[118] ITU-500-R Recommendation BT.500-8, Methodology for the Subjective Assessment of
the Quality of Television Pictures, 1998.

[119] Jacobson V., Congestion Avoidance and Control, in Proceedings of ACM SIG-
COMM'88, August 1988.

[120] Jacobson V., Compressing TCP/IP Headers for Low-Speed Serial Links, RFC1144,
February 1990.

BIBLIOGRAPHY 288

[121] Jacobson V., Modified TCP Congestion Avoidance Algorithm, email to the end2end
list, April 1990.

[122] Jacobson V., Braden R., Borman D., TCP Estensions for High Performance,
RFC1323, May 1992.

[123] Jacobson V., Problems with Arizona’s Vegas, email to the end2end list, March 1994.

[124] Jacobson V., Nichols K., Poduri K., An Ezpedited Forwarding PHB, RFC2598, June
1999.

[125] Jain R., A Timeout-Based Congestion Control Scheme for Window Flow-Controlled
Networks, in [EEE Journal on Selected Areas in Communications, Volume 4, Number

7, October 1986.

[126] Jain R., A Delay-Based Congestion Control Scheme for Window Flow-Controlled Net-
works, DEC TR 566, April 1989.

[127] Jain R., Congestion Control in Computer Networks, Issues and Trends, in [EEE Net-
works, pp. 24-30, May 1990.

[128] Karandikar S., et al., TCP Rate Control, in Computer Communication Review, Volume
30, Number 1, January 2000.

[129] Karam M., Tobagi F., Analysis of the Delay and Jitter of Voice Traffic Over the
Internet, in Proceedings of INFOCOM, April 2001.

[130] Karn P., Partridge C., Round-Trip Time Estimation, in Proceedings of SIGCOMM'87,
August 1987.

[131] Karn P., Partridge C., Improving Round-Trip Time Estimates in Reliable Transport
Protocols, in ACM Transactions on Computer Systems, November 1991.

BIBLIOGRAPHY 289

[132] Kimura J., Tobagi F., Pulido J-M., Emstad P., Perceived Quality and Bandwidth
Characterization of Layered MPEG-2 Video Encoding, in Proceedings of the SPIE'99,
September 1999.

{133] Kleinrock L., Information Flow in Lager Comunication Nets, September 1961.

[134] Kleinrock L., Comunication Nets: Stochastic Message Flow and Delay, McGraw Hill,
1964.

(135] Kleinrock L., Queueing Systems: Volume 2 Computer Applications, Wiley, 1975.

[136] Krishnamurthy B., Mogul J., Kristol D., Key Differences between HTTP/1.0 and
HTTP/1.1, in Proceedings of the WWW-8 Conference, May 1999.

[137] Krishnamurthy B., Willis C., Analyzing Factors That Influence End-to-End Web Per-
formance, in Proceedings of the Ninth International WWW Conference, May 2000.

(138] Kulik J., et al., Paced TCP for High Delay-Bandwidth Networks, in Proceedings of
IEEE GLOBECOM, December 1999.

[139] Kumar A., Comparative Performance of Versions of TCP in a Local Area Network
with @ Lossy Link, in [EEE/ACM Transactions on Networking, August 1998.

[140] Kung H. T., et al., The Use of Flow Control in Mazimizing ATM Network Perfor-
mance, in Proceedings of Hot Interconnects, August 1993.

(141] Lakshman T., Madhow U., The Performance of TCP/IP for Networks with High
Bandwidth-Delay Products and Random Loss, in IEEE Transactions on Networking,
June 1997.

[142] Le Leannec F., Guillemot C., Error Resilient Video Transmission over the Internet,

in Visual Communication and Image Processing, January 1999.

BIBLIOGRAPHY 290

[143] Lin D., Morris R., Dynamics of Random Early Detection, in Proceedings of SIG-
COMM, August 1997.

[144] Lin D., Kung H., TCP Fast Recovery Strategies: Analysis and Improvements, in Pro-
ceedings of INFOCOM, March 1998.

[145] Linux Document, LBX Mini How To, http://www.tldp.org/HOWTO/mini/LBX.html.

[146] Mah B., An Empirical Model of HTTP Network Traffic, in Proceedings of INFOCOM,
April 1997.

[147] Manley S., Seltzer M., Web Facts and Fantasy, in Proceedings of the USENIX Sym-

posium on Internet Technologies and Systems, December 1997.

[148] Markopoulou A., Tobagi F., Karam M., Assessment of VoIP Quality over Internet
Backbones, in Proceedings of INFOCOM, June 2002.

[149] Mathis M., Semke J., Mahdavi J., Ott T., The Macroscopic Behavior of the TCP
Congestion Avoidance Algorithm, in Computer Communication Review, Volume 27,

Number 3, July 1997.

[150] Mathis M., Mahdavi J., Floyd S., Romanow A., TCP Selective Acknowledgements
Options, RFC2018, October 1996.

[151] Mathis M., Mahdavi J., Forward Acknowledgments: Refining TCP Congestion Control,
in Proceedings of ACM Sigcomm 1992, October 1996.

[152] Mathis M., Semke J., Mahdavi J., Lahley K., The Rate-Halving Algorithm for TCP
Congestion Control, http://www_psc.edu/ networking/ rate-halving/, June 1999.

[153] May M., Diot C., Lyles B., Reasons not to Deploy RED, in Proceedings of the
[EEE/IFIP IWQoS, June 1999.

BIBLIOGRAPHY 291

[154] McCanne S., Vetterli M., Jacobson V., Low-complezity Video Coding for Receiver

Driven Layered Multicast, in Journal on Selected Areas in Communications, August

1997.

[135] Mikhailov M., Wills C., Embedded Objects in Web Pages, WPI Technical Report,
WPI-CS-TR-00-05, March 2000.

[156] Mills D. L., Internet Delay Ezperiments, RFC889, December 1983.

[157] Minshall G., Saito Y., Mogul J., Verghese B., Application Performance and TCP’s
Nagle Algorithm, in Workshop on Internet Server Performance, May 1999.

[158] Mo J., La R., Venkat A., Walrand J., Analysis and Comparison of TCP Reno and
Vegas, Proceedings of INFOCOM, May 1999.

[159] Mogul J., Observing TCP Dynamics in Real Networks, in Proceedings of ACM Sig-
comm, August 1992.

(160] Mogul J., The Case for Persistent-Connection HTTP, in Proceedings of SIG-
COMM'95, August 1995.

[161] Morris R., TCP Behavior with Many Flows, in IEEE Conference on Network Protocols,
Atlanta, October 1997.

[162] Morris R., Scalable TCP Congestion Control, in Proceedings of INFOCOM, March
2000.

[163] Morris R., Lin D., Variance of Aggregated Web Traffic, in Proceedings of INFOCOM,
March 2000.

[164] Mortier R., et al., Implicit Admission Control, in IEEE Journal on Selected Areas in

Communications, Volume 18, Number 12, December 2000.

[165] Nagle J., Congestion Control in IP/TCP Internetworks, RFC896, January 1984.

BIBLIOGRAPHY 292

[166] Nagle J., Email to comp.protocols.tcp-ip list, http://www.openldap.org/lists/openldap-
devel /199907 /msg00082.html.

[167] Nandy B., Seddigh N., Pieda P., DiffServ’s Assured Forwarding PHB: What Assurance
does the Customer Have?, in Proceedings of NOSSDAV, July 1999.

[168| Netsizer (Telcordia), URL: www.netsizer.com.

[169] Network World Fusion, Vendors on Flow Control,

www.nwfusion.com/netresources/0913flow2.html, September 1999.

[170] Noureddine W., Tobagi F., Selective Back-Pressure in Switched Ethernet LANs, in
Proceedings of IEEE Globecom, December 1999.

[171] Noureddine W., Tobagi F., Improving the Performance of Interactive TCP Applica-
tions Using Service Differentiation, in Computer Networks, Special Issue on the New

Internet Architecture, May 2002.

[172] Noureddine W., Tobagi F., Improving the Performance of Interactive TCP Applica-
tions Using Service Differentiation, in Proceedings of INFOCOM, June 2002.

[173] O'Malley S., Peterson L., TCP Eztensions Considered Harmful, RFC1263, October
1991.

[174] Ott T., Kemperman J., Mathis M., The Stationary Behavior of Ideal TCP Congestion
Avoidance, ftp://ftp.bellcore.com/pub/tjo/TCPWindow.ps, August 1996.

[175] Ozveren C., Simcoe R., Varghese G., Reliable and Efficient Hop-by-Hop Flow Control,

in Journal on Selected Areas in Communications, Volume 13, Number 4, May 1995.

[176] Padhye J., Firoiu V., Towsley D., and Kurose J., Modeling TCP Throughput: a Simple
Model and its Empirical Validation, in Proceedings of SIGCOMM, August 1998.

BIBLIOGRAPHY 293

[177] Padhye J., Floyd S., On Inferring TCP Behavior, in Proceedings of SIGCOMM, Au-
gust 2001.

[178] Padmanabhan V., Mogul J., Improving HTTP Latency, in Computer Networks and
ISDN Systems, December 1995.

[179] Paxson V., Growth Trends in Wide-Area TCP Connections, in IEEE Network, August
1994,

[180] Paxson V., Empirically-Derived Analytic Models of Wide-Area TCP Connections, in
[EEE Transactions on Networking, 2(4), August 1994.

[181] Paxson V., Floyd S., Wide-Area Traffic, the Failure of Poisson Modeling, in ACM

Computer Communication Review, October 1994.

[182] Paxson V., End-to-End Internet Packet Dynamics, in Proceedings of ACM SIG-
COMM’97, September 1997.

{183] Paxson V., Automated Packet Trace Analysis of TCP Implementations, in Proceedings
of ACM SIGCOMM'97, September 1997.

[184] Paxson V., End-to-End Routing Behavior in the Internet, in Proceedings of
IEEE/ACM Transactions on Networking, Volume 5, Number 5, October 1997.

[185] Paxson V., Known TCP Implementation Problems, RFC2525, March 1999.

[186] Paxson V., Allman M., Computing TCP’s Retransmission Timer, RFC2988, November
2000.

[187] Pazos C. M., Sanchez Agrelo J.C., Gerla M., Using Back-Pressure to Improve TCP
Performance with Many Flows, UCLA.

[188] Podhuri K., Nichols K., Simulation Studies of Increased TCP Initial Window Size,
RFC2415, September 1998.

BIBLIOGRAPHY 294

[189] Postel J (editor), Transmission Control Protocol, RFC761, January 1980.
[190] Postel J (editor), Transmission Control Protocol, RFCT93, September 1981.
[191] Postel J., Reynolds J., File Transfer Protocol, RFC959, October 1985.

[192] Pitkow J., Summary of WWW Characterizations, in Computer Networks and ISDN
Systems Journal, Volume 30, April 1998.

(193] Ramakrishnan K., Floyd S., A Proposal to Add ECN to IP, RFC2481, January 1999.

[194] Ramakrishnan K., Floyd S., Black D., The Addition of ECN to IP, RFC3168, Septem-
ber 2001.

[195] Ren J-F., Landry R., Flow Control and Congestion Avoidance in Switched Ethernet
LANSs, in Proceedings of the ICC'97, pp.508-512, June 1997.

[196] Sahu S., Nain P., Towsley D., Diot C., Firoiu V., On Achievable Service Differentiation
with Token Bucket Marking for TCP, UMASS Technical Report 99-72.

[197] Salim J. H., ECN in IP Networks, RFC2884, July 2000.

[198] Savage S., et al., TCP Congestion Control with a Misbehaving Receiver, in Computer

Communications Review, Volume 29, Number 3, October 1999.

[199] Seddigh N., Nandy B., Pieda P., Study of TCP and UDP Interaction for the AF PHB,
Internet Draft, June 1999.

[200] Seddigh N., Nandy B., Pieda P., Bandwidth Assurance Issues for TCP Flows in a
Differentiated Services Network, in Proceedings of Globecom 1999.

[201] Seifert R., Asymmetric Flow Control, http://grouper.ieee.org/groups/802/3/z/public/
presentations/nov1996/RS8023x.pdf, November 1996.

BIBLIOGRAPHY 295

[202] Semeria C., Fuller F., 3Com’s Strategy for Delivering Differentiated Service Levels,
3Com Internet White Paper, February 1998.

[203] Semke J., Mahdavi J., Mathis M., Automatic TCP Buffer Tuning, in Proceedings of
ACM SIGCOMM, October 1998.

[204] Shenker S., Wroclawski J., General Characterization Parameters for Integrated Service
Network Elements, RFC2215, September 1997.

[205] Shepard T., Partridge C., When TCP Starts With Four Packets Into Only Three
Buffers, RFC2416, September 1998.

[206] Shneiderman B., Designing the User Interface, Third Edition, Addison-Wesley, 1997.

[207] Sikdar B., Kalyanaraman S., Vastola K. S., TCP Reno with Random losses: Latency,
Throughput and Sensitivity Analysis, in Proceedings of IEEE IPCCC, April 2001.

[208] Socolofsky T., Kale C., A TCP/IP Tutorial, RFC1180, September 1991.

[209] Spero S., Analysis of HTTP Performance, http://www.ibiblio.org/mdma-
release/http-prob.html, RFC765, July 1994.

[210] Stevens W., UNIX Network Programming, Prentice Hall, Addison-Wesley, 1990.
[211] Stevens W., TCP/IP lllustrated Volume 1: The Protocols, Addison-Wesley, 1994.

[212] Stevens W., TCP Slow Start, Congestion Avoidance, Fast Retransmit and Fast Recov-
ery Algorithms, RFC2001, January 1997.

[213] Strathmeyer C., Voice/Data Integration: An Applications Perspective, in [EEE Com-

munications Magazine, Volume 25, Number 12, December 1987.

[214] TechFest, Ethernet Technical Summary, http://www.techfest.com/networking/

lan/ethernet.htm.

BIBLIOGRAPHY 296

[215] Telegeography Inc., Website, http://www.telegeography.com/.

[216] Thompson K., Miller G. J., Wilder R., Wide-Area Internet Traffic Patterns and Char-

acteristics, in [EEE Network, November/December 1997.

[217] Thompson K., Miller G. J., Claffy G., The Nature of the Beast: Recent Measurements
from an Internet Backbone, in INET, July 1998.

[218] Tobagi F., Dalgic 1., Performance Evaluation of 10Base-T and 100Base-T Ethernets
Carrying Multimedia Traffic, in IEEE JSAC, Volume 14, Number 7, September 1996.

[219] Touch J., Heidemann J., Obraczka K., Analysis of HTTP Performance, USC-ISI Tech-
nical Report 98-463, December 1998.

[220] Visweswaraiah V., Heidemann J., Rate Based Pacing for TCP, http://www.isi.edu/
Isam/publications/ rate_based _pacing/index.html, June 1997.

[221] Visweswaraiah V., Heidemann J., Improving Restart of Idle TCP Connections, USC
TR 97-661, November 1997.

[222] Wang Z., Crowcroft J. Eliminating Periodic Packet Losses in §.3 Tahoe BSD, in ACM

Computer Communications Review, Vol 22, Number 2, 1992.

[223| Wechta J., Eberlein A., Halsall F., Spratt M., Simulation Based Analysis of the In-
teraction of End-to-End and Hop-by-Hop Flow Control Schemes in Packet Switched
LANs, in Proceedings of the 15th UK Teletraffic Symposium on Performance Engi-
neering in Information Systems, Durham, UK, March 1998.

[224] Wechta J., Eberlein A., Halsall F., The Interaction of TCP Flow Control Procedure in
End Nodes on the Proposed Flow Control Mechanism for Use in IEEE 802.3 Switches,
in Proceedings of the Eigth HPN, September 1998.

BIBLIOGRAPHY 297

[225] Wechta J., Eberlein A., Halsall F., An Investigation into the Performance of Switched
LANSs, in Proceedings of the Conference on Networks and Optical Communications,
June 1998.

[226] Wiegand T., et al., Error-Resilient Video Transmission Using Long-Term Memory
Motion-Compensated Prediction, in IEEE Journal on Selected Areas in Communica-
tions, Volume 18, Number 6, June 2000.

[227] Winkler S., A Perceptual Distortion Metric for Digital Color Video, in Proceedings of
SPIE Human Vision and Electronic Imaging, January 1999.

[228] Willinger W., et al., Self Similarity through High Variability: Statistical Analysis of
Ethernet LAN Traffic at the Source Level, in IEEE/ACM Transactions on Networking,
February 1997.

[229] Yeom I., Narasimha Reddy A., Modeling TCP behavior in a Differentiated-Services
Network, TAMU ECE Technical Report, May 1999.

[230] Yeom I., Reddy A. L. N., Realizing Throughput Guarantees in a Differentiated Services
Network, in Proceedings of ICMCS, June 1999.

[231] Yeom I., Reddy A. L. N., Impact of Marking Strategy on Aggregated Flows in a Dif-
ferentiated Services Network, in Proceedings of IWQOS, June 1999.

[232] Zhang L., Shenker S., Clark D., Observations on the Dynamics of a Congestion Control

Algorithm: The Effects of Two-Way Traffic, in Proceedings of SIGCOMM, September
1991.

[233| Zhang L., Why TCP Timers Don’t Work Well, in Proceedingsof SIGCOMM'86, Au-
gust 1986.

